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Abstract 
The northern goshawk (Accipiter gentilis) is listed as a sensitive species and there is a need to understand the relationship 
between long-term goshawk demographic performance and three-dimensional (3-D) structure of its forest habitat. Before the 
availability of lidar, it was not possible to relate detailed landscape-level forest structural data to the demography of a species. 
The Kaibab Plateau in Arizona benefits from a unique combination of high quality lidar data and extensive, long-term field 
data describing northern goshawk demographic performance. This allows for an in-depth investigation of how the 3-D canopy 
structure, as sampled by lidar, can help identify which of the 3-D structural elements of forest vegetation confer habitat quality 
for the goshawk. In this phase of the project we used FUSION software to generate a collection of lidar-derived 3-D canopy 
structure derivatives, at a 20 m resolution, that describe the height and density of the canopy across the entire Kaibab Plateau. 
In addition, lidar forest inventory models were generated using an area-based approach to model forest inventory parameters of 
interest, with R2 values ranging from 0.19 to 0.75. The next phase of this project will use the 3-D canopy structure layers and 
landscape inventory models as a baseline to explore and understand the links between 3-D canopy structure and goshawk 
demographic performance on the Kaibab Plateau. 
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Introduction
The northern goshawk (Accipiter 
gentilis) is an apex predator that lives in 
the sub-canopy of forests throughout 
the United States and Canada. It is a 
sensitive species or a species of special 
concern in six of the nine U.S. 
Department of Agricultural Forest 
Service Regions, all United States Fish 
and Wildlife Service Regions, six 
Bureau of Land Management national 
conservation lands, many U.S. State 
jurisdictions, Canadian Provinces, and 
is a threatened species in British 
Columbia. To date, the Forest Service 
has experienced three decades of 
expensive litigation in response to 
concerns that forest management affects 
goshawk viability by reducing its habitat 
quality. This has created a need to 
understand the relationship between 
long-term goshawk demographic 
performance and 3-D structure of its 
forest habitat. 

On the Kaibab National Forest the 
northern goshawk (hereafter referred to 
as the “goshawk”), demographic 
performance has been studied for 21 
years (1991 to 2011) in 125 territories 
across the Kaibab Plateau in Arizona. 
Associated field data contains 
information pertaining to territory 
occupancy, mate and territory fidelity, 
reproduction, turnover, recruitment, 
immigration, and juvenile and adult 
survival rates. Based on syntheses of the 
habitat needs of the goshawk and the 
habitats of their bird and mammal prey, 
Reynolds and others (1992) developed a 
set of management recommendations to 
sustain goshawk populations through 
the management of forest structure. 

Lidar technology has proven capable of 
directly measuring the vertical and 
horizontal forest structure and sub-
canopy structure across large landscapes 
(Lefsky and others 2002, Reutebuch 
and others 2005). Before advances in 
remote sensing technology—i.e., lidar—
natural resource managers were limited 
to characterizing wildlife habitat based 
on field data of a limited spatial extent 
in conjunction with optical remote 
sensing data that does not characterize 

vertical structure within the forest 
canopy (Vierling and others 2008). This 
method restricts managers in accurately 
characterizing 3-D forest canopy 
structure across large landscapes. Given 
the increased availability of lidar data, 
numerous studies have recently been 
conducted that explore lidar-derived 
3-D canopy structure information and 
how it relates to wildlife demographic 
data. Several studies have demonstrated 
the use of lidar data as a predictive tool 
for species distributions based on 
known natural history of the species. 
For example, Nelson and others (2005) 
suggest great potential in identifying 
tall, dense forests that are the preferred 
habitat of the endangered Delmarva fox 
squirrel (Sciurus niger cinereus). 
Alternatively lidar can be used to better 
understand habitat selection by species 
that have a known distribution. 
Broughton and others (2006) used 
existing territory maps of marsh tits 
(Poecile paustris) and documented 
substantial vegetation structural 
differences between the occupied 
territories and the adjacent areas not 
occupied by the birds. Their results 
indicated that marsh tits occupied sites 
composed of mature trees with a 
sub-canopy shrub layer and avoided 
sites containing many small, young 
trees. Vogeler and others (2013) and 
Hagar and others (2014) compared 
occupancy rates of the brown creeper 
(Certhia americana) and marbled 
murrelet (Brachyramphus marmratus), 
respectively, with lidar canopy 
descriptor statistics describing height 
and density, both of which were 
relatively strong predictors of 
occupancy. Goetz and others (2007) 
illustrated links between vertical forest 
structure diversity and bird species 
diversity. 

There has also been work that indicates 
there is a strong agreement between 
vegetation structural measurements 
derived from lidar and ground field 
measurements; this suggests that lidar 
measurements can supplement field-
derived vegetation structural 
measurements used to characterize avian 
habitat (Hyde and others 2005, 2006). 

Lidar data have not only been used to 
describe the physical structure of animal 
habitat but also to indicate the quality 
of existing habitat across large 
landscapes. Hill and others (2004) and 
Hinsley and others (2002) illustrated 
this capability by associating canopy 
height to nesting chick body mass, 
which is a surrogate for breeding success 
and territory quality. This relationship 
allowed them to predict habitat quality 
across the entire lidar acquisition. 

The Kaibab Plateau in Arizona has a 
unique combination of high quality 
lidar data and extensive, long-term field 
data describing northern goshawk 
demographic performance. This allows 
for an in-depth investigation of how the 
3-D canopy structure, as sampled by 
lidar, can help identify which of the 
3-D structural elements of the forest 
vegetation confer habitat quality for the 
goshawk. Before the availability of lidar, 
the ability to relate detailed landscape-
level forest structural data to the 
demography of a species was 
unavailable. 

To test the efficacy of the management 
recommendations and to empirically 
identify the forest structural elements 
that confer habitat quality for the 
goshawk, Richard Reynolds from the 
Rocky Mountain Research Station and 
colleagues proposed to acquire lidar data 
for the entire study area in order to 
relate the long-term demographic 
performance (total reproduction, 
survival, site fidelity) of goshawks on 
each of the 125 territories to the 3-D 
forest structure of those territories. In 
the summer of 2012 high density lidar 
data was acquired covering the entire 
Kaibab Plateau. The objective of this 
Remote Sensing Steering Committee-
sponsored project was to provide 
lidar-derived 3-D canopy structure 
derivatives and plot-based lidar forest 
inventory models and associated GIS 
layers for the Kaibab Plateau goshawk 
study area. In addition, technology 
transfer efforts have and will be 
provided by the Remote Sensing 
Applications Center (RSAC) to ensure 
the cooperators are informed about the 
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above-mentioned products and apply 
them in an appropriate manner when 
building northern goshawk habitat and 
demographic models.

Study Area
The study area for this project was the 
Kaibab Plateau, located in Arizona and 
encompassed by the Kaibab National 
Forest and Grand Canyon National 
Park-North Rim (figure 1). The Kaibab 
Plateau comprises 1800 km2 of ponderosa 
pine and mixed conifer forests, 
predominately above 2,200 m. The 
landscape also includes meadows and 
forest openings created from disturbances 
such as high-severity fire, wind throw, 
and timber harvesting. The Kaibab 
Plateau provides suitable habitat for the 
goshawk, which occupies the principal 
forest types of ponderosa pine, mixed 
conifer and spruce-fir of the Southwest 
(Reynolds and others 1992). 

Data
The data required for this phase of the 
project included fully preprocessed 
airborne lidar data and associated field 
plot data. The two datasets were collected 
during two consecutive growing seasons. 
The field plot data were collected with 
protocols designed to ensure they were 
accurately geolocated and with a fixed-
radius plot design so the plots would be 
appropriate for use with high-resolution 
lidar data.

Field Data

In addition to the lidar-derived 3-D 
canopy structure derivatives (relative 
measures of the height and density of the 
canopy), it was also desirable to generate 
forest inventory models (timber volume, 
biomass, basal area, etc.) and explore 
their potential relationship with goshawk 
habitat. To do this successfully, lidar-
specific field data were needed so 
relationships between the lidar plot 
measurements and field-derived inventory 
plot measurements could be modeled. 

To ensure the training data (field 
measurements) were appropriate for 

model development, the Kaibab Plateau 
was divided into three main land cover 
types based on forest stand data: forest, 
woodlands (pinyon-juniper), and 
burned areas. The forest land cover type 
was given highest priority for field plot 
collection as forested land covers the 
majority of the Kaibab Plateau and 
makes up the most significant portion 
of the goshawk habitat. In addition, 
lidar-derived inventory models have 
been shown to work well in forest 
environments. A limited number of 
plots were collected in the burned areas 
and no plots were collected in the 
woodlands as that class made up only a 
small fraction of the land cover within 
the study area.

Sampling Strategy

Stratified sampling has been shown to 
be more efficient than random sampling 
for lidar forest inventory modeling 
(Hawbaker and others 2009). A 
stratified sample design produces a 
greater range of attribute variability and 
minimizes extrapolation beyond the 
range of the observed field data in the 
resulting predictive regression models. 

Two lidar-derived 3-D canopy structure 

derivatives—dominant height (95th 
percentile height), illustrated in figure 
2, and vegetation density (percentage 
of all returns above 3 m), illustrated in 
figure 3—were used to create 
structural classes for the stratified 
sampling scheme for the forested land 
cover type. Four equal-area quartiles 
were created for both the dominant 
height and vegetation density layers. 
Sixteen structural strata were then 
created to include all combinations of 
dominant height and vegetation 
density. Data was collected from a 
minimum of six field plots within each 
stratum with a total of ninety-seven 
forested plots across the landscape 
(table 1). 

In recently burned areas, where the 
canopy structure is less variable, a 
simpler stratification was used, with 
two equal-area classes of height and 
density. Data was collected from 19 
plots in those areas. All field data was 
collected in the summers of 2013 and 
2014 from 0.1 acre (.04 ha) circular 
plots.

Figure 1—The study area for this project is the Kaibab Plateau, located in Arizona 
within the Kaibab National Forest and the Grand Canyon National Park. The figure on 
the left provides a regional perspective of the study area while the figure on the right 
provides a more detailed large-scale perspective of the landscape with NAIP imagery 
as the background. 
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95th Percentile height of all returns > 2 m 95th Percentile landscape metric

Figure 2—The point cloud graphic on the left illustrates the logic for computing the 95th percentile height. For height statistics, 
returns from the ground and any vegetation below 2 m are excluded from the calculation. The GIS layer on the right depicts the 95th 
percentile height calculated at 20 m resolution for the study site.

Vegetation density (all returns above 3 m / total 
number of all returns)*100 

Vegetation density landscape metric

95th Percentile height

 High: 50 m

 Low: 2 m

All Return Density

 High: 100

 Low: 0

Figure 3—The point cloud graphic on the left illustrates the logic for computing the all-return vegetation density above 3 m. The 
GIS layer on the right depicts the all-return vegetation density metric calculated at 20 m resolution for the study site.
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Field Work Preparation 

Location maps for all plots to be 
measured were created to assist the field 
crew. For each plot, an aerial photo was 
used as backdrop with the plot marked 
by a circle in the predetermined 
location. A subset was also clipped from 
the lidar data at each location, which 
provided the field crew an additional 
3-D visualization of the desired plot 
location. The field crew used these map 
products and the predetermined plot 
coordinates to navigate to approximate 
plot locations. The GPS coordinates of 
the plot center as identified on site 
became the official coordinates used for 
further analysis.

Plot Protocol 

At each of the 116 randomly selected 
locations a fixed-radius plot with a 
radius of 37.2 ft was delineated. Each 
plot consisted of an outer (37.2 ft 
radius) and inner plot (16.7 ft radius). 
At each plot the slope, aspect, and 
landform position was recorded; plus 
four photographs in each cardinal 
direction were taken facing towards plot 
center from the outer plot perimeter. 
Within the full plot all trees (live and 
dead) greater than or equal to 8” in 
diameter were measured for species, 
diameter at breast height (DBH), total 
height, height to live crown base, crown 
diameter in two directions, and distance 
and compass direction from plot 
centers. Within the inner plot, all trees 
less than 8” DBH were measured and 
tallied by species into trees over or 
under 6 ft tall and dominant shrubs 
were tallied by species and height (over 
or under 6 ft), and measured for average 
height for each category. In addition, 
within the inner plot, percentages of 
ground cover, total vegetation cover 
(trees, shrubs, herbaceous, and 
graminoid), and cover of dominant 

trees, dominant shrubs, and herbaceous, 
and graminoid vegetation were 
occularly estimated. Coarse woody 
debris (over 3”, large end diameter) 
were also inventoried in the inner plot. 
Each piece of woody debris was 
measured for small and large end 
diameters and total length.

GPS Data Collection

When using lidar and field data to 
model forest inventory parameters it is 
imperative that sub-meter plot location 
accuracy be obtained. This relatively 
high level of positional accuracy is 
needed to minimize error and maximize 
correlation between field and lidar data 
in the modeling environment.

At plot center a sub-meter GPS location 
was collected using a Trimble 
GeoXH6000. Each point was collected 
using GPS + GLONASS, accuracy 
based logging settings, for a minimum 
of 10 minutes. Logging was paused if 
accuracy was worse than 1 m, and 
resumed when accuracy was 1 m or 
better. Differential correction was 
applied using Pathfinder Office 
referenced from a single base station in 
Fredonia, Arizona. 

All plot data were entered into Trimble 
Juno Personal Data Recorders (PDR) 
using FSVeg software so that forest 
inventory parameters could be 
generated for each plot using the Forest 
Vegetation Simulator (FVS).

Table 1—Sampling strata, height and density thresholds, and number of plots 
collected

Stratum P95 Height Density 
Number of 

Plots 
Collected

1Q1 2 to 17 m <29% 6
2Q1 17 to 22 m <29% 6
3Q1 22 to 27 m <29% 6
4Q1 >27 m <29% 6
1Q2 2 to 17 m  29% to 40% 6
2Q2 17 to 22 m 29% to 40% 6
3Q2 22 to 27 m 29% to 40% 6
4Q2 >27 m 29% to 40% 6
1Q3 2 to 17 m 40% to 49% 6
2Q3 17 to 22 m 40% to 49% 6
3Q3 22 to 27 m 40% to 49% 6
4Q3 >27 m 40% to 49% 6
1Q4 2 to 17 m 49% to 100% 7
2Q4 17 to 22 m 49% to 100% 6
3Q4 22 to 27 m 49% to 100% 6
4Q4 >27 m 49% to 100% 6
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Lidar Data

High pulse-density lidar data were 
acquired for approximately 185,000 ha 
within the Kaibab Plateau study area 
between August 25 and September 15, 
2012. The dataset met or slightly 
exceeded the minimum recommended 
specifications for forest inventory 
modeling1 with a nominal pulse density 
of 10 pulses/m2, greater than 50 percent 
side lap, and a scan angle within 14° of 
nadir. The lidar data was projected in 
UTM zone 12 North.

Methods

Generating Lidar 3-D Canopy 
Structure Layers at the 
Landscape Scale
FUSION software (McGaughey 2014) 
was used to generate a collection of 
lidar-derived 3-D canopy structure 
derivatives that describe the height and 
density of the canopy (table 2). All the 
canopy structure derivatives were 
generated from the raw lidar point 
cloud within the boundaries of each 
3-D grid cell, with the grid spanning 
the entire lidar collection 
(“gridmetrics”). All gridmetrics were 
computed using a 20-m cell size, which 
corresponds to approximately the same 
area as a 0.1 acre field plot. All height 
gridmetrics were calculated for the 
canopy using returns above a height 
cut-off of 2 m to exclude the ground 
and low-lying vegetation from 
influencing the “canopy height 
descriptor” statistics. Density 
gridmetrics were calculated using a 
static cover threshold (canopy cut-off) 
of 3 m and the dynamic thresholds of 
mean and mode values within each grid 
cell. Density strata (height slices) were 
selected based on the natural history of 

the goshawk and its foraging behaviors 
(Reynolds and others 1992). Figures 2 
and 3 provide a look into the logic and 
the resulting landscape-scale outputs for 
the 95th percentile height and the 
percentage of all returns above 3 m 
(vegetation density), respectively. 
Landscape products such as these were 
generated for all the metrics listed in 
table 2. In addition to the strata layers 
listed in table 2, “relative density strata” 
layers were also generated for all the 
same height breaks. Relative density 
layers differ from the standard density 
strata layers in that the proportion is 
calculated by taking the number of 
returns in the stratum of interest and 
dividing it by the sum of points in the 
stratum and the remaining points below 
the stratum of interest. This is done in 
an attempt to normalize the effects of 
the canopy above the strata of interest. 
For additional explanation of the logic 
used for calculating the lidar metrics 
please refer to “First Order Lidar 
Metrics: A supporting document for 
lidar deliverables” (http://www.fs.fed.us/
eng/rsac/lidar_training/pdf/
LidarMetricsDescriptionOfDeliverables_
Generic_12_15_14.pdf) 

Generating Field Inventory 
Attributes at the Plot Scale

For the field data to be useful in lidar 
modeling applications the “area-based 
approach” methodology needs to be 
applied. This approach sums individual 
tree metrics to the plot level and creates 
relationships between plot sums and 
lidar descriptor metrics for those same 
plot areas. To get the plot-based 
estimates from the field data, individual 
tree data collected at each field plot 
were entered into the Region 3 variant 
of the Forest Vegetation Simulator 

(FVS) and estimates of forest 
inventory attributes were created for 
each of our 116 field plots (table 3). 
Note that forest inventory attributes 
are in English units per request of 
cooperators.

It should be mentioned that a majority 
of the plots were collected in the 
Ponderosa Pine forest type and the 
inventory models will perform the best 
in that forest type. The number of 
plots collected in each of the different 
forest types is presented in table 4. In 
an effort to provide more insight into 
the composition of the forest and the 
sampled plots the dominance types of 
the plots is summarized in appendix A.

Generating Lidar Predictor 
Statistics at the Plot Scale

In the area-based modeling approach, 
each plot needs to be “clipped from 
the lidar” and normalized to height 
above ground. Summary statistics 
describing the density and height 
distributions are then calculated for 
each plot, using exactly the same 
parameters and thresholds as for 
calculating the gridmetrics described 
in the earlier section (statistics listed in 
table 2). Using the x, y coordinates 
and the plots radius of 37.2 ft, the 
plots were clipped from the lidar data 
and normalized to height above 
ground using FUSION’s Clipdata 
command. The height and density 
metrics were then calculated using 
FUSION’s Cloudmetrics command. 
The resulting product is a table with 
each plot associated with a complete 
list of canopy metrics for height and 
density that will be used as potential 
predictors in the inventory modeling 
efforts.

1 Discrete lidar data continues to prove useful in many natural resource applications. However, not all lidar datasets are equal. The most important 
single characteristic, perhaps, that determines the appropriate use of a lidar dataset is the mean number of pulses/m2. For example, relatively low 
pulse-density data (0.5 to 1 pulse/m²) is typically only useful for bare earth or terrain models. Medium pulse-density data (1 to 3 pulses/m²) has the 
additional potential of providing canopy height models. Forest structure information for resolving individual trees, however, requires relatively high 
pulse-density data (typically 3 pulses/m2 or higher).

http://www.fs.fed.us/eng/rsac/lidar_training/pdf/LidarMetricsDescriptionOfDeliverables_Generic_12_15_14.pdf
http://www.fs.fed.us/eng/rsac/lidar_training/pdf/LidarMetricsDescriptionOfDeliverables_Generic_12_15_14.pdf
http://www.fs.fed.us/eng/rsac/lidar_training/pdf/LidarMetricsDescriptionOfDeliverables_Generic_12_15_14.pdf
http://www.fs.fed.us/eng/rsac/lidar_training/pdf/LidarMetricsDescriptionOfDeliverables_Generic_12_15_14.pdf
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Table 2—Lidar metrics generated at landscape and plot scales using FUSION software

Category Output variable

Height distribution

Total number of returns

Count of returns by return number

Minimum

Maximum

Mean

Median (output as 50th percentile)

Mode

Standard deviation

Variance

Coefficient of variation

Interquartile distance

Skewness

Kurtosis

AAD (Average absolute deviation)

L-moments (L1, L2, L3, L4)

L-moment skewness

L-moment kurtosis

Height percentiles 1st, 5th, 10th , 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th percentiles

Density indices

Percentage of first returns above a specified height (canopy cover estimate)

Percentage of first returns above the mean height

Percentage of first returns above the mode height

Percentage of all returns above a specified height (canopy density estimate)

Percentage of all returns above the mean height

Percentage of all returns above the mode height

Number of all returns above a specified height / total first returns * 100

Number of all returns above the mean height / total first returns * 100

Number of all returns above the mode height / total first returns * 100

Strata density layers

Proportion of returns from 0–1 m compared to total returns

Proportion of returns from 1–2 m compared to total returns

Proportion of returns from 2–4 m compared to total returns

Proportion of returns from 4–7 m compared to total returns

Proportion of returns from 7–10 m compared to total returns

Proportion of returns from 10–13 m compared to total returns

Proportion of returns from 13–16 m compared to total returns

Proportion of returns from 16–19 m compared to total returns

Proportion of returns from 19–22 m compared to total returns

Proportion of returns from 22–25 m compared to total returns

Proportion of returns from 25–28 m compared to total returns

Proportion of returns from 28–31 m compared to total returns

Proportion of returns from 31–34 m compared to total returns

Proportion of returns from 34–37 m compared to total returns

Proportion of returns from 37–40 m compared to total returns

Proportion of returns from 40–43 m compared to total returns
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Table 3—Inventory attributes calculated for individual trees and summarized to the plot level

Attribute Description/Units of Measurement

Biomass (STBIOMASS) Tree biomass  
Units: Tons per acre 

Quadratic mean diameter 
(QMD)

DBH of the tree of average basal area, based on live trees only  
Units: Inches

Stand basal area (SBA) Units: Square feet per acre 
Total cubic foot volume 
(TCuFT) Units: Cubic feet per acre

Merchantable board foot 
volume (MBdFT) Units: Cubic feet per acre

Merchantable cubic foot 
volume (MCuFT) Units: Cubic feet per acre

Stand density index–
Reineke (SDI_R)

An expression of relative stand density based on the predictable relationship 
between average tree size and trees per unit area in dense stands  
Units: Percentage

Stand density index–Zeide 
(SDI_Z)

An expression of relative stand density based on the predictable relationship 
between average tree size and trees per unit area in dense stands  
Units: Percentage

Largest diameter tree 
(LDIA) Units: Inches 

Height of largest diameter 
tree (HgtLDia) Units: Feet 

Nominal DBH (NDia) Computed by averaging the 9 sample trees centered on the 70th percentile tree 
Units: Inches

Nominal height (NHgt) Computed by averaging the 9 sample trees centered on the 70th percentile tree 
Units: Feet

Height of tallest tree 
(HgtTTree) Units: Feet 

Crown base height 
(CrBsHgt) Units: Feet 

Crown bulk density 
(CrBlkDn) Units: Pounds per cubic foot 

Trees per acre (TPA) Units: Number per acre

Canopy cover (CanCov) Corrected for overlap, random tree distribution 
Units: Percentage

Surface fuels of herbs and 
shrubs (HerbShrb)

Live surface fuels of herbs and shrubs 
Units: Tons per acre

Canopy load biomass 
(CLBiomss)

Includes crown and foliage, not stem 
Units: Tons per acre

Lorey’s mean height (BA_
WT_HGT)

Mean stand height weighted by basal area 
Units: Feet

Vegetation structural 
stage (VSS) Units: Categorical
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Forest Inventory Model 
Development

The field inventory attributes from FVS 
and the lidar-derived plot-level height 
and density metrics were combined into 
one modeling table in preparation for 
exploring their relationships. Many of 
the lidar statistics are very similar; 
therefore, to reduce collinearity during 
regression modeling, variables with a 
correlation of greater than 0.9 were 
identified and all but one were 
removed.

Next, potential predictors for each field 
inventory parameter were identified 
from the available lidar predictors. 
Regsubsets, which is contained within 
the leaps R statistical package (http://
cran.r-project.org), was used to narrow 
down our potential predictors. 
Regsubsets is a regression subset 
selection process and was implemented 
using a sequential replacement method 
to identify the top four predictor 
combinations with up to three variables. 
Linear regression models were then 
created with the selected predictor 
combinations and evaluated based on 
R2 values, collinearity, standard error 
and model significance. We favored the 
simplest model while still trying to 
maximize model fit. Logic was applied 
during model selection to try to include 
both height and density metrics as 
predictors to keep the models robust in 
a variety of canopy structure scenarios. 

Results and 
Discussion

Final Inventory Models

The final inventory models are 
highlighted in table 5 and are ordered 
based on their R2 values, highest to 
lowest. Overall the models for volume 
were the strongest, with R2 values of 
0.74 and above. Mean height and 
density above mean height were the 
most strongly correlated lidar predictor 
variables for volume, which makes sense 

since taller trees with larger upper 
canopies generally have higher timber 
volume. The tree biomass model was 
also strong, with an R2 value of 0.68, 
with the same two lidar predictors of 
mean height and density above mean 
height. Volume and biomass work well 
in the area-based modeling approach as 
they are both calculated with relatively 
objective field measurements and are 
driven by height and density directly. 
The remaining models that had R2 

values above 0.6 were the tree height 
inventory parameters: height of tallest 
tree, height of largest diameter tree and 
nominal height. Again these are directly 
measured in the field and are driven by 
the lidar parameter of maximum height. 
It is worth noting that lidar accurately 
measures dominant tree height to 
within generally 1 m accuracy and using 
the area-based modeling approach 
might be unnecessary for at least the 
height of the tallest tree. Rather, it 
might be more prudent to use the 
lidar-derived 3-D canopy structure 
derivatives of maximum height or the 
95th height percentile when making 
inferences about the tree canopy height 
across large landscapes. 

The models for basal area and Lorey’s 
mean height had R2 values of 0.55 and 
0.58, respectively. The best lidar 
predictors for basal area were percentage 
of returns above the mean, relative 
density of returns between 2 and 4 m, 
and relative density of returns between 
19 and 22 m. Of interest is that the 

relative density of returns between 2 
and 4 m was negatively correlated with 
basal area, which would indicate that 
plots with larger trees had less dense 
understory. The last models with R2 

values above 0.5 were the stand density 
indices as calculated using the Zeide 
and Reineke methods. Similar to basal 
area, they were both positively 
correlated with density above mean 
height and negatively correlated with 
the relative density of returns between 2 
and 4 m. The rest of the models had R2 

of less than 0.5 and will not be 
discussed specifically model by model. 
In general, the poorly performing 
models (R2 < 0.5) are either not directly 
related to height and density in a linear 
way or they are measured in the field 
using subjective techniques or estimated 
with models that make large 
assumptions. For example, we would 
expect canopy biomass (R2 = 0.41) to 
have strong agreement with the lidar 
data using the area-based modeling 
approach, but canopy biomass is 
challenging to measure in the field and 
is probably inconsistently measured. On 
the other hand, lidar samples the 
canopy very consistently, so 
disagreement between the two datasets 
is not surprising. This would also be the 
case for canopy cover (R2 = 0.35) and 
crown bulk density (R2 =0.2). As 
mentioned above for the height metrics, 
canopy cover is probably better 
estimated across the landscape using the 
3-D canopy density metrics derived 
from lidar first returns. 

Table 4—Number of field plots collected in each forest type.

Forest type Number of field plots 
collected

Ponderosa pine 73
Dry mixed-conifer 18
Wet mixed-conifer 18
Aspen 5
Pinyon, juniper mixed with ponderosa 2

http://cran.r-project.org
http://cran.r-project.org
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Table 5—Summary of the best linear regression forest inventory models created, using lidar predictor variables to model field-derived 
forest inventory attributes, sorted by descending linear fit R² values (continued on next page)

Predicted 
parameter P1 P2 P3 Linear 

Fit R² Linear equation

Merchantable cubic 
foot volume (MCuFt) mean height

density 
above mean 
height

NA 0.75

610.071658 + 1.365251 * “mean_height” 
- 73.800300 * “density above mean 
height” + 12.100059 * (“mean_height” * 
“density above mean height”)

Total cubic foot 
volume (TCuFt) mean height

density 
above mean 
height

NA 0.74

629.475303 + 2.631671 * “mean_height” 
- 71.618261 * “density above mean 
height” + 12.580401 * (“mean_height” * 
“density above mean height”)

Merchantable board 
foot volume (MBdFt) mean height

density 
above mean 
height

rel_forest_
strata_28_31 0.74

z (- 14765.4563) + 1537.0163 * “mean_
height” + 345.7255 * “density above 
mean height” + 29055.6962 * “rel_
forest_strata_28_31”

Height of largest 
diameter tree 
(HgtLDia)

max height NA NA 0.68 (- 17.72583) + 3.56277 * “max_height”

Sum of tree biomass 
(STBiomss) mean height

density 
above mean 
height

NA 0.68

9.4581254 + .3977259 * “mean_height” 
- 0.7182464 * “density above mean 
height” + 0.1727576 * (“mean_height” * 
“density above mean height”)

Height of tallest tree 
(HgtTTree) max height NA NA 0.68 (- 19.105951) + 3.706713 * “max_height”

Nominal height 
is computed by 
averaging the 
9 sample trees 
centered on the 70th 
percentile tree (NHgt)

max height height 
skewness NA 0.66 (- 1.056533) + 2.36759 * “max_height” - 

11.954539 * “height_skewness”

Lorey’s mean height 
(BA_WT_HGT) max height mean height NA 0.58 (- 18.371106) + 1.588907 * “max_height” 

+ 2.889848 * “mean_height”

Stand basal area 
(SBA)

density 
above mean 
height

 rel_forest_
strata_2_4

rel_forest_
strata_19_22 0.55

24.707406 + 3.885735 * “density above 
mean height” - 116.166478 * “rel_forest_
strata_2_4” + 108.999229 * “rel_forest_
strata_19_22”

Stand density index - 
Reineke (SDI_R)

density 
above mean 
height 

rel_forest_
strata_2_4 NA 0.53

19.658145 + 7.573155 * “density above 
mean height” - 153.450886 * “rel_forest_
strata_2_4”

Stand density index - 
Zeide (SDI_Z)

density 
above mean 
height 

rel_forest_
strata_2_4 NA 0.53

19.025117 + 7.373651 * “density above 
mean height” - 150.590236 * “rel_forest_
strata_2_4”

Canopy load biomass, 
includes crown and 
foliage, not stem 
(CLBiomss)

mean height rel_forest_
strata_19_22 NA 0.41

(- 0.3880573) + 0.8969171 * “mean_
height” + 24.6236621 * “rel_forest_
strata_19_22”

Quadratic mean 
diameter (QMD) mean height height 

covariance NA 0.40 (- 2.657393) + 1.060491 * “mean_height” 
+ 12.494121 * “height_CV”
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Table 5-Continued— Summary of the best linear regression forest inventory models created, using lidar predictor variables to model 
field-derived forest inventory attributes, sorted by descending linear fit R² values

Predicted 
parameter P1 P2 P3 Linear 

Fit R² Linear equation

Largest diameter tree 
(LDia) max height NA NA 0.39 1.217215 + .871298 * “max_height”

Nominal DBH 
is computed by 
averaging the 
9 sample trees 
centered on the 70th 
percentile tree (NDia)

mean height forest_
strata_2_4 NA 0.39 1.395438 + 1.087181 * “mean_height” + 

25.774645 * “forest_strata_02_04”

Canopy cover, 
corrected for 
overlap, random tree 
distribution (CanCov)

density 
above mean 
height

rel_forest_
strata_16_19 NA 0.35

9.6643313 + 0.5653002 * “density above 
mean height” + 34.2516683 * “rel_
forest_strata_16_19”

Trees per acre (TPA) rel_forest_
strata_10_13 NA NA 0.34 26.92284 + 174.40535 * “rel_forest_

strata_10_13”
Crown bulk density 
(CrBlkDn)

rel_forest_
strata_10_13 NA NA 0.2 0.02330149 + .10922510 * “rel_forest_

strata_10_13”
Crown base height 
(CrBsHgt) mean height NA NA 0.19 (- 0.2501845) + 1.4750417 * “mean_

height”
Live surface fuels 
of herbs and shrubs 
(HerbShrb)

mean height NA NA 0.19 1.27440995 - 0.04569552 * “mean_
height”

The area-based approach used to model 
inventory parameters has some 
limitations and those were highlighted 
in the observations identified as outliers 
during the modeling efforts. Based on 
the variability of natural landscapes, we 
decided to retain all observations while 
developing our inventory models. To 
illustrate one such outlier, plot 4102 
had one of the highest field-calculated 
values for total cubic foot volume, 
9,623 cubic feet per acre. Table 5 
shows that the lidar predictors for total 
cubic volume are mean height and 
density above mean height. If we 
explore where plot 4102 ranks in these 
two lidar plot parameters, we see that it 
is approximately average in the 
distribution of both. This disagreement 
between the datasets is a result of edge 
effects. In most cases, a 0.1 acre plot is 
big enough to mitigate the edge effects 
but three very large trees near the edge 
of this plot contributed to a substantial 
discrepancy between the FVS 
calculations and the lidar-based values 

as a significant portion of the canopies 
was excluded from the clipped lidar 
data (figure 4). This resulted in the 
model under-predicting as the edge 
effects reduced the density and height 
statistics. A potential fix for this plot 
would be to increase its size to 0.2 acre; 
however, the potential benefit would 
probably not justify the increased field 
costs. 

In another example, plot 1303 had a 
total cubic volume of zero as calculated 
by FVS because there were no live trees 
with a DBH of 8” or greater. The plot 
did contain a lot of young aspen trees, 
which create a very dense canopy and 
elevate the lidar predictor metric 
“density above mean height” to above 
average, as illustrated in figure 5. Given 
this contradiction, the inventory model 
over-predicted this plot and weakened 
the agreement between the lidar and the 
field observations. These plots highlight 
limitations of the area-based modeling 
approach, but on the whole there is 

strong agreement between the lidar and 
plot values for approximately half of the 
FVS-calculated inventory attributes. 

In addition to the linear models 
discussed above and highlighted in 
table 5, we also attempted to create a 
predictive model for the Vegetation 
Structural Stage (VSS) attribute 
recorded at each plot. VSS is a 
categorical variable and doesn’t lend 
itself to a linear regression approach 
like the continuous variables. VSS is 
made up of six categories: 1-Grass and 
Forb, 2-Sapling, 3-Young Forest, 
4-Mid-Aged Forest, 5-Mature Forest, 
and 6-Old Forest. Random Forests 
(Breiman 2001) was used to initially 
investigate the predictive power of lidar 
for modeling VSS. A Random Forests 
model was created to predict VSS using 
the 6 standard classes with an out-of-
bag-error rate of 48.28 percent. The 
error matrix shown in table 6 provides 
some insight on where errors and 
confusion of classes were prevalent.
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Point Cloud representation of plot 4102 Photograph of field plot 4102

Figure 4—The point cloud and photograph above illustrate the edge effects that degraded the relationship between field data 
calculations and lidar point cloud metrics for plot 4102.

Point Cloud representation of plot 1303 Photograph of field plot 1303

Figure 5—The point cloud and photograph above illustrate the characteristics that degraded the relationship between field data 
calculations and lidar point cloud metrics for plot 1303. The field-based calculations for total cubic volume excluded trees smaller 
than 8” DBH, which excludes all of the trees on this plot.
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As table 6 shows, most classes had a 
very high error rate, with class 3 being 
predicted wrong 100 percent of the 
time and class 5 being predicted wrong 
approximately 80 percent of the time. 
When we ran Random Forests using 
only plots in classes 4 and 6, the out of 
bag error rate was 20 percent, which 

indicates that lidar is able to 
differentiate between mid-aged forest 
and old forest classes. But when we 
included mature forest (class 5) in the 
classification, the error rate jumped 
greatly, indicating that lidar is not able 
to differentiate between mature forest 
and mid-aged or old forest. The 

Random Forests variable importance 
plots indicated that height variables 
had the most importance within the 
models (figure 6). It was beyond the 
scope of this project to explore VSS 
modeling any further, but we thought 
it was valuable to share initial results.

Table 6—Error matrix for the VSS Random Forests classification

Predicted 
class 1

Predicted 
class 3

Predicted 
class 4

Predicted 
class 5

Predicted 
class 6 Class error

Actual class 1 7 1 1 2 5 0.56
Actual class 3 0 0 5 1 3 1.00
Actual class 4 3 0 19 3 4 0.34
Actual class 5 3 0 6 4 8 0.81
Actual class 6 1 0 6 4 30 0.27

Variable importance plot for all classes Variable importance plot for classes 4 and 6 only

Figure 6—The variable importance plots from the Random Forests classification runs. 
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Applying Inventory Models at 
the Landscape Scale

One of the advantages of lidar is that 
the detailed canopy structure 
information used to create the forest 
inventory linear regression models at the 
plot level is also available at the 
landscape level. This allows us to apply 
the models listed in table 5 across our 
entire study area. The gridmetrics used 
to apply the models were produced at a 
20 m cell size as this has approximately 
the same area as a 0.1 acre plot (this 
preserves the spatial scale of the models 
created with the area-based approach). 
Each equation in table 5 was applied to 
the landscape using the corresponding 
gridmetrics of the selected predictors, as 
specified by the plot-level models, to 
create forest inventory GIS layers. The 
forest inventory GIS layer for total 
cubic volume is depicted in figure 7. A 
complete collection of the forest 
inventory GIS layers is displayed in 
appendix B. 

The extreme topography along the edge 
of the Kaibab Plateau (north rim of the 
Grand Canyon), produced some cliff 
edge artifacts that influenced the height 
statistics generated from the point 
clouds. The effect is illustrated with the 
95th percentile height gridmetric in 
figure 8. These artifacts, if not dealt 
with, would propagate when the models 
were applied across the landscape so a 
cliff edge mask was applied to all final 
products. The mask was created using a 
GIS workflow that incorporated slope, 
curvature and lidar-derived canopy 
height. For a more detailed explanation 
and technical instructions for 
implementing the cliff edge masking 
workflow, refer to the “Masking Lidar 
Cliff Edge Artifacts” document (http://
www.fs.fed.us/eng/rsac/lidar_training/
pdf/Masking_Lidar_
CliffEdgeArtifacts_06122014.pdf).

The field sampling strategy was 
designed to minimize model 
extrapolation but inevitably some 
extrapolation gets introduced. Model 

extrapolation creates values outside of 
the range of the training data for the 
inventory attribute being predicted. For 
example, if the maximum total cubic 
volume calculated from the field plot 
data is 10,404 ft3/ac, but there are 
values exceeding that when the model is 
applied to the landscape, then 
extrapolations outside the data range 
used to create the model exist. The 
problem with extrapolation is a lack of 
training data to assess if the model is 
performing well. A summary of the 
extrapolated values produced when the 
inventory models were applied to the 

landscape is presented in appendix C. It 
is worth noting that an extremely low 
percentage of the pixels across the 
landscape were outside the training data 
range, with only two models 
extrapolating by 1 to 1.5 percent 
beyond the range of training data, and 
the others were extrapolating by less 
than 0.1 percent. Thus, we conclude 
that extrapolation is not a significant 
concern. To deal with the extrapolation 
issues the negative extrapolation values 
in the landscape models were changed 
to zero and the high-end extrapolation 
values were left unchanged. 

Total cubic feet (ft^3/acre)

    High: 27,768.9

    Low: 0

Figure 7—The GIS grid layer (20 m cell size) representing the total cubic volume 
forest inventory layer. 

http://www.fs.fed.us/eng/rsac/lidar_training/pdf/Masking_Lidar_CliffEdgeArtifacts_06122014.pdf
http://www.fs.fed.us/eng/rsac/lidar_training/pdf/Masking_Lidar_CliffEdgeArtifacts_06122014.pdf
http://www.fs.fed.us/eng/rsac/lidar_training/pdf/Masking_Lidar_CliffEdgeArtifacts_06122014.pdf
http://www.fs.fed.us/eng/rsac/lidar_training/pdf/Masking_Lidar_CliffEdgeArtifacts_06122014.pdf
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NAIP imagery for the Kaibab plateau 95th Percentile landscape metric

Figure 8—The NAIP imagery on the left highlights an area in the south of the Kaibab Plateau along the north rim of the Grand Canyon 
with a lot of cliff edges. The figure on the right is the 95th percentile height overlaid on the NAIP imagery and illustrates the linear 
cliff edge artifacts that are present in the height metrics.

Next Steps
The generation of lidar-derived 3-D 
canopy structure derivatives and lidar 
forest inventory models is the first phase 
in this effort and will provide the Rocky 
Mountain Research Station (RMRS) 
and Region 3 Regional Office (R3) with 
baseline data that can be used to explore 
and understand the links between 3-D 
canopy structure and goshawk 
demographic performance on the 
Kaibab Plateau. RMRS and R3 will use 
the baseline data products to assess their 
agreement with the demographic data. 
If they are in good agreement, 
predictive models can be created to 
provide the Forest Service with a 
dependable and repeatable information 
source to sustainably manage habitat for 
the goshawk on the Kaibab Plateau and 
similar forest types across the western 
U.S. 

In addition to providing 3-D canopy 
structure information for assessing 
goshawk habitat, the lidar data will also 
provide new levels of efficiency and 
accuracy for a host of forest 
management objectives. In particular it 
will be helpful in the effort to restore 
the composition and structure in the 
southwestern forests as outlined by 
Reynolds and others (2013) in the 
RMRS General Technical Report, 
“Restoring composition and structure in 
Southwestern frequent-fire forests: a 
science-based framework for improving 
ecosystem resiliency.”

Generally the lidar bare earth surface 
(high resolution DEM) and canopy 
derivatives will provide all resource 
managers on the Kaibab Plateau with a 
dataset that can improve efficiencies in 
daily management operations and 
decisions. RSAC is committed to 

providing technical consultation to 
resource managers on the Kaibab 
Plateau to ensure the lidar data are used 
in an appropriate and effective manner. 
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Appendix A: Field Plot Dominance Type

Table A-1—Number of field plots collected in each dominance type

Dominance type Number of field plots 
collected

Ponderosa pine 69
Quaking aspen 9
Engelmann spruce 7
Douglas-fir 4
Engelmann spruce—Quaking aspen 4
Ponderosa pine—Douglas-fir 3
Shade intolerant evergreen tree mix 3
Engelmann spruce—Ponderosa pine 2
Evergreen and deciduous tree mix 2
Gambel oak 2
Ponderosa pine—Quaking aspen 2
Quaking aspen—Douglas-fir 1
Deciduous shrub mix 1
Fir—Ponderosa pine 1
Pinyon—Ponderosa pine 1
Ponderosa pine—Engelmann spruce 1
Ponderosa pine—Shade intolerant evergreen tree mix 1
Two needle pinyon 1
White fir—Quaking Aspen 1
White fir—Singleleaf pinyon 1
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Appendix B: Forest Inventory GIS Layers
The GIS grid layers (20 m cell size) representing all inventory models presented in table A-1 applied at the landscape level.

Merchantable cubic feet 

 R2 = 0.75

Total cubic feet

 R2 = 0.75

Merchantable board feet

Appendix B-1 —The GIS grid layers (20 m cell size) represent the forest inventory parameter models applied at the landscape level. 

Merchantable board feet (ft^3/acre)

 High: 102,639 

 Low: 0

Merchantable cubic feet (ft^3/acre)

 High: 26,465.8

 Low: 0

Total cubic feet (ft^3/acre)

 High: 27,768.9

 Low: 0

 R2 = 0.74

Height of largest diameter tree 

 R2 = 0.68

Biomass

 R2 = 0.68 

Height of tallest tree 

 R2 = 0.68

Appendix B-2—The GIS grid layers (20 m cell size) represent the forest inventory parameter models applied at the landscape level. 

Height of largest dia tree (ft)

 High: 338.545

 Low: 0

Biomass (tons/acre)

 High: 415.99

 Low: 0

Height of tallest tree (ft)

 High: 351.559

 Low: 0
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Normal height 

 R2 = 0.66 

Lory’s mean height 

 R2 = 0.58 

Basal area 

 R2 = 0.55 

Appendix B-3—The GIS grid layers (20 m cell size) represent the forest inventory parameter models applied at the landscape level. 

Stand density index - Reineke

 R2 = 0.53 

Stand density index - Zeide

 R2 = 0.53 

Canopy load biomass

 R2 = 0.41

Appendix B-4—The GIS grid layers (20 m cell size) represent the forest inventory parameter models applied at the landscape level. 

Normal height (ft)

 High: 247.487

 Low: 0

Basal area (sq ft/acre)

 High: 256.922

 Low: 0

Lory’s mean height (ft)

 High: 338.808

 Low: 0

Stand density index - Reineke

 High: 411.579

 Low: 0

Stand density index - Zeide

 High: 400.429

 Low: 0

Canopy load biomass (tons/acre)

 High: 61.406 5

 Low: 1.429 99
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Quadratic mean diameter

 R2 = 0.40 

Largest diameter tree

 R2 = 0.39 

Nominal DBH

 R2 = 0.39 

Appendix B-5—The GIS grid layers (20 m cell size) represent the forest inventory parameter models applied at the landscape level. 

Quadratic mean diameter

 High: 76.244 9

 Low: 0

Nominal DBH (inches)

 High: 76.812 8

 Low: 3.622 35

Largest diameter tree (inches)

 High: 88.345 5

 Low: 3.004 51

Percent canopy cover

Percent canopy cover

 High: 53.506 8

 Low: 9.667 33

 R2 = 0.35 

Trees per acre

Trees per acre

 High: 201.328

 Low: 26.922 8

 R2 = 0.34 

Appendix B-6—The GIS grid layers (20 m cell size) represent the forest inventory parameter 
models applied at the landscape level. 
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Crown bulk density

 R2 = 0.20 

Crown base height

 R2 = 0.19 

Herb shrub surface fuels 

Herb shrub surface fuels (tons/acre)

 High: 1.181 79

 Low: 0

Crown bulk density (lbs/ft*3)

 High: 0.132 527

 Low: 0.023 301 5

Crown base height (ft)

 High: 100.978

 Low: 2.739 73

 R2 = 0.19 

Appendix B-7—The GIS grid layers (20 m cell size) represent the forest inventory parameter models applied at the landscape level. 
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Appendix C: Extrapolation of Landscape Inventory GIS Layers
Table C-1 summarizes the effect of extrapolation when lidar inventory models were applied at the landscape level. 
Extrapolation values were identified after the cliff edge artifacts were masked out.

Table C-1—Summary of model extrapolation values in the landscape inventory GIS layers

Inventory 
parameter

Minimum 
plot value

Minimum 
predicted 

value

Pixels 
extrapolated 

below 
minimum plot 

value

Maximum 
plot value

Maximum 
predicted 

value

Pixels 
extrapolated 

above 
maximum plot 

value

MCuFt 0 -1,705.56 0.71% 9,836 29,821.40 0.11%
TCuFt 0 -1,449.05 0.34% 10,404 31,305.50 0.11%
MBdFt 0 -11,650.10 21.58% 64,100 125,779.00 0.001%
HgtLDia 0 -10.50 2.38% 121 338.55 1.04%
STBiomss 0 -1.40 0.0001% 175.81 464.08 0.05%
HgtTTree 0 -11.59 2.64% 122 351.57 1.51%
NHgt 0 -337.49 3.20% 117 252.37 0.06%
SBA 0 -65.21 0.01% 365.62 324.61 0%
SDI_R 0 -82.64 0.01% 386.08 486.67 0.001%
SDI_Z 0 -81.76 0.01% 378.85 473.34 0.001%
CLBiomss 0 1.42 0% 61.77 81.01 0.0001%
QMD 0 -0.46 0.03% 47.27 94.54 0.002
LDia 0 2.98 0% 54.6 88.35 0.05%
NDia 0 3.61 0% 46.67 100.06 0.002%
CanCov 0 9.67 0% 67.64 55.83 0%
TPA 0 26.92 0% 260 201.33 0%
CrBlkDn 0 0.02 0% 0.25 0.13 0%
CrBsHgt -1 2.73 0% 82 133.61 0.0004%
HerbShrb 0.35 -2.87 4.94% 2.3 1.18 0%
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