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Overview 
This document is intended to accompany the “Advanced Lidar Applications--Forest Inventory Modeling” 

training, however, it can also serve as a stand-alone reference or refresher for experienced users.  

Estimating forest inventory parameters from lidar and field plot data involves four major steps including: 1) 

collecting and preparing the forest inventory data, 2)  preparing the lidar data, 3) Modeling (i.e., identifying 

and testing relationships between lidar derived variables and forest inventory variables),  and, 4) Applying 

the modeled relationships across the landscape.  There are four main sections to this document—

corresponding to the four major steps above. 

Background 
Discrete lidar data continues to prove itself useful in many natural resource applications.  However, while 

nearly all lidar data can be useful for some applications, not all lidar datasets are equal.  Probably the 

most important single characteristic that determines the appropriate use of a lidar dataset is the mean 

number of pulses/m2.  For example, relatively low pulse-density data (0.5 to 1 pulse/ m2) is typically only 

useful for bare earth or terrain models.  Medium pulse-density (1-3 pulses/ m2) data has the additional 

potential of providing canopy height models.  Forest structure information however, requires relatively 

high pulse-density data (typically >= 3 pulses/ m2).  In addition, meaningful forest structure information 

from lidar data requires a significant investment in field plot inventory data (existing plot data is usually not 

adequate).  It also requires that the general procedures of this document—including identifying and 

testing statistical relationships between lidar derived variables and forest inventory variables—are 

performed successfully.  In other words, high-quality (high pulse density) lidar data alone are insufficient 

for deriving detailed forest structure1 information across a landscape—additional significant investments 

in field data, data processing, and statistical modeling are also required.  Without making the additional 

required investments, the extra cost of acquiring high-quality lidar data is wasted. 

Field Plot Data -- collecting and preparing the forest inventory data 
Collecting field data is required to quantify forest attributes from lidar data.  A well designed field 
protocol, ensuring measurements needed to either calculate or model the attributes that will be 
estimated from the lidar data,  is time well spent and will eliminate the need for subsequent field visits.  
In order to establish relationships between lidar data and forest inventory data, the following 
characteristics of the forest inventory data are critical: 

• Location—plots should be measured to an accuracy of one meter or less. 

• Timing—plots should be measured within one growing season of lidar acquisition. 

• Size—plots should be large enough (> 1/10th acre) to minimize edge effect and characterize the 
vegetation.  In addition, plots should have a fixed radius (rather than a variable radius as is 
common in Common Stand Exams (CSEs)). 

• Biomass—all biomass contributing to lidar data pulse returns should be measured (e.g. not just 
the big trees). 

• Samples—must have enough plots for statistical validity and the plots must cover the full range 
of variability of the measurement of interest. 

• Consistency—in addition to a consistent and relatively large size, plots should represent single 
conditions—and collect the same data fields for each plot. 

 
1 Lidar data alone can supply canopy height and percent canopy cover, however, it cannot provide 
detailed inventory parameters such as quantitative estimates of biomass without associated field plots. 
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When resource managers learn that field data are still a requirement to generate forest estimates from 
the lidar data, a common response is to suggest the use of available field inventory data for the study 
area.   These available field inventory data typically meet the original objectives for which they were 
designed; however, almost invariably each lacks at least one of the critical components listed above. To 
illustrate this issue, and before we discuss considerations for conducting a dedicated field sampling 
effort, we’ll look at two commonly available forest inventory datasets with differing scales: 1) National 
scale--the Existing Forest Inventory and Analysis (FIA) plots and, 2) Local scale—Common Stand Exams 
and Timber Cruises. 

National Scale Data: Existing Forest Inventory and Analysis (FIA) plots  
Existing Forest Inventory and Analysis (FIA) phase 2 data consist of an established grid of plots, one plot 
per 6000 acres, for which detailed measurements are made on a 5 year cyclical basis. The 
measurements are generally made on a cluster of four 1/24th acre subplots (24ft radius) where trees of 
5” dbh and larger are measured.  

Why FIA plots are insufficient for our purposes:  

• Although a consistent field protocol is used to acquire all the FIA plots, the sample density of one 

sample per 6000 acres provides too few samples for the lidar analysis at the project scale.  

• There are three biomass problems with the FIA protocol when the data are used to establish 

statistical relationships with their corresponding lidar points:  

1. A field crew applies a set of rules to decide which trees are inside our outside the plot 

based on the distance of the tree bole to the plot center. Lidar data represent the canopy 

biomass from above. When an area corresponding to a field plot is subset from the lidar 

data, all the lidar points within the plot area are included whether the tree bole is inside or 

outside the plot area. A large tree just outside the plot, can contribute a large amount of 

biomass to the plot, more so if the tree is leaning across the plot boundary. Field 

measurements will adjust for this, measurements from the clipped lidar data will not.  

2. The smaller the plot size, the larger the relative edge effect is. Experience has shown 

that the edge effect is too large on 1/24th acre FIA plots.  The edge effect becomes 

acceptably small for 1/10th acre plots or larger.  

3. Another problem with using FIA plots is the minimum tree size of 5 inch dbh that is 

measured on the micro-plots. Lidar pulses are returned from all biomass in the overstory, 

not just the larger trees. When trees smaller than 5 inches dbh contribute to the top of the 

canopy (younger stands or mixed stands, these trees are part of the clipped lidar plot but 

are not accounted for in the micro-plot FIA inventory. 

• FIA measurements are made on a fixed timing schedule which might not corresponds with the 

lidar acquisitions—this can lead to significant time discrepancies because of disturbances such 

as fire, tree mortality, or silvicultural treatments.  

• The locations of FIA plots are not publically known and are generally not measured with sub-

meter accuracy.   Sub-meter locations are best to create a good fitting relationship between the 

two data sets. Errors in location, just as a timing discrepancy, can result in attempting to relate 

two different conditions. 

Local scale data: Common Stand Exams and Timber Cruises:  
At the local (or project) level, the forest information is typically obtained at the stand level (not plot level). 

Although many more samples will be available, similar issues as with the FIA plots will be encountered. At 

the project level, field plots are measured as part of a timber cruise or a stand exam each having a variety 
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of field protocols—thus, not all plots contain the same measurements. This can lead to inconsistencies 

when plots measured for different purposes are combined over an area.   

Why Common Stand Exams and Timber Cruises are insufficient for our purposes:  

• Plots focusing on volume are using a variable radius type plot. This type of a plot cannot be 

matched with its equivalent lidar plot because the radius is different for each plot location and the 

radius is not known.   

• The type of information collected and the precision of information depends on the examination 

level (quick plot, extensive or intensive examination)—thus, the data can lack consistency.   

• CSE plots are summarized up to the stand level not to the plot level. This makes it impossible 

to use these plots to estimate forest attributes on a per acre basis.  

• Just as with the FIA plots, the time of measurement and approximate location will cause 

issues when relating the field data to the corresponding plots.  

• Timber cruises are done to get a reliable estimate for timber appraisals. The focus is on tallying 

commercial timber volume – not total timber volume nor the total biomass that lidar will 

estimate.  

• Stands exams are usually performed on selected stands based on some management criteria.  

Not all the conditions present in the project landscape are represented in the stand exams. To be 

able to develop a relationship between the plot data and the lidar data the entire range of 

conditions must be represented.  

As illustrated above, both national-scale and local-scale field data have significant problems correlating 

with metrics derived from the lidar point clouds. The problems become even more pronounced when 

combining plots from different inventories. Modeling input data derived from several field data sources will 

most likely result in a table or database with many No Data records.  During the regression modeling 

process, all records are required to have data for all fields included in the analysis. A table with many 

sparsely populated records may have taken a long time to compile but will not yield meaningful results.  

Thus, the effort of collecting dedicated field data remains largely unavoidable to successfully quantify 

forest attributes from lidar data.   

Dedicated Field Sampling For Lidar Derived Forest Inventory Estimation  
From the above discussion, it should be clear that better predictions can be obtained with field plots that 

are measured with the specific goal of relating the lidar and inventory data. Doing so will optimize the 

information that can be derived from the lidar data.  As with any field data collection the question of how 

many samples, their distribution and what to measure must be determined—i.e. you must have a 

sampling design and a field protocol.   The objective of your sampling design and field protocol is to 

discover relationships that will allow you to quantify vegetation structure from lidar pulse height 

information2—while balancing statistical validity with cost restraints.  Regression models relate field plot 

data to lidar plot data and then make predictions across the extent of the lidar data. The accuracy of the 

predictions is improved if field data are collected across the entire range of variability in the population. 

 
2 It should be noted that the objective of most sampling efforts is to make some inference about a 

population (e.g. the mean and standard error of the mean) from the characteristics of the sample.  This 

objective changes when field plots are measured to discover and test the relationships with another data 

set measuring the same forest attribute(s) by different means (in our case an airborne laser scanner).  

The goal is no longer to generate estimates of a population but to model and quantify vegetation structure 

from lidar pulse height information.  
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We recommend that you consult an experienced statistician or biometrician to develop a sampling design 

and field protocol—however, a few general guidelines and suggestions follow.  

Sample Design 

Many sample design options such as random, systematic, stratified, and hybrid are feasible.  However, if 

field locations are determined at random, it is likely that the ends of the data distribution will not be 

included. The ends of the data distribution have great influence on regression models and should be 

included for good model fit.  In addition, without samples at the ends of the data distribution, model 

estimates beyond the range of the field collected data are notoriously unreliable.  A study by Hawbaker 

and others, 2009, illustrates that a stratified sample design, selected from the lidar data, results in 

better forest attribute estimates when compared to models based on the analysis of plots selected using a 

random sampling design.  The stratified sample produced a greater range of attribute variability and the 

predictive regression models minimized extrapolation beyond the range of the observed field data.  On 

the other hand, a stratified sample design may require more sample plots than a random sample design.  

Again, we recommend that you consult an experienced statistician or biometrician to develop a valid and 

cost-effective sampling design. 

Assuming the lidar data has been acquired and is available, the suggested stratification can be 

accomplished based on variability of height3 and canopy cover4. Creating these two raster grids is a 

fairly straightforward process in FUSION. Both of these metrics are related to how much biomass is 

present in the forest and some measure of both are frequently showing up as best predictor variables to 

estimate forest inventory parameters.  Existing stand maps, inventory data, vegetation maps and 

interpreted spectral data (resource photography, NAIP, etc.) can help identify and stratify conditions of 

interest. The best ancillary information is comparable in scale and should represent similar ground 

conditions, i.e. as co-temporal to the lidar acquisition as possible.  

Plot Protocol  

After establishing where and how many field plots to visit, the specifics of what to measure at each plot 

must be addressed.  The objectives and processes will likely be different from what field crews are 

familiar with.  The typical objective of collecting field plot measurements is to make some inference about 

a population.  The objective in this case is to discover and test the relationships with the lidar data.  Thus, 

we need to adjust our field measurements to better reflect how lidar technology samples the field plots.  

The lidar plot data is essentially a cylinder that includes all of the 3-D lidar returns within a fixed radius of 

a point location—the field measurements should thus include all biomass features within the same 3-D 

space even if, for example, the tree stem is outside the plot but the canopy is within. 

Not only will adjustments be made to the traditional way of doing field measurements, field crews will 

have to make adjustments in the field.  Specific instructions and training are necessary to effectively 

handle those occasions when field conditions prevent the field plot data from corresponding to the lidar 

plot data. Examples include:  

• A large tree with the trunk outside the plot radius but the crown taking up a large portion of the 

plot. Solution: it is better to move the center location of the plot.  

• The plot is located in a mixed condition (edge of a burn, open and closed canopy ecotone, etc.). 

Solution:  it is better to move it so the field measurements only represent a single condition.  

 
3 Several measures of height are available including: mean height, max height, standard deviation, and 
others. 
4 Canopy cover is often referred to as vegetation density in the lidar community. 
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Field prep work  

Following are suggestions and recommendations to ensure that field time is efficient and cost-effective. 

• Create location maps with high spatial resolution imagery (capable of distinguishing individual 

tree crowns) of the plot sites.  ArcMap has a MapBook utility that is very useful to create these 

maps. 

• Create your field sheets (or data loggers loaded with required software). 

• Create list of tree species alpha codes (these will be migrated to FVS_spp codes later). 

• Decide the units used for the measurement (English or metric) and use the equivalent tools 

(tapes, calipers,…) – think about the units used in equations or models to derive the parameter of 

interest.  

• Explain to the field crew why the procedures might be different from how things are done for other 

field studies.  Consider showing field crews some lidar plot subsets to help them visually 

understand the potential issues. 

Field protocol for lidar correlated plots  

The cost for collecting field data ranges between $500 and $1000 per plot. It adds significant cost to a 

lidar project. If it is done well, the field data will result in good forest estimations from the lidar data. If it is 

not done well, the data cannot be used to relate field conditions to the lidar data and the effort will not 

contribute to the objective of the project.  

The lidar scanner samples everything in its view path. In forested areas the returns will represent the 

vertical forest structure. Under dense canopies, most returns will come from the upper canopy. Thus, the 

biomass in the upper canopy is more influential when modeling forest structure than the lower vegetation. 

In fact, returns below two meters are usually filtered from the lidar data before the modeling process 

starts.  These and other issues should be reflected in the field measurement protocol.  Following is a list 

of suggestions that should be considered to make the match between the field measurements and the 

lidar data as close as possible:   

• Field data should best be acquired within 1 growing season of the lidar acquisition. 

• Use a fixed radius plot (a variable radius one, although fast to get field measurements of BAF, 

cannot be clipped from the lidar data since the radius is not known).   

• Plot size: minimum 0.1 acres when there are 8 plus trees with at least 3 inch diameter.  When 

there are less than 8 trees with 3+” DBH increase the plot size to 0.2 acres.  Edge trees on plots 

smaller than 0.1 acres can cause difficulty when relating the plots to the lidar data.  

• Minimum tree diameter: (3+”) – smaller diameter trees can be excluded from the analysis later. 

Trees less than 3” when representing understory are less likely to be seen in the lidar point cloud.  

• Minimum number of trees to measure: 8+ (if there are less but large diameter trees on the plot it 

is best to expand the plot size or change to location according to protocol instructions.  If there 

are fewer than eight and all small diameter trees, the plot most likely does not represent forested 

conditions–the conditions may have changed since the plot location was selected).  

• Measure dbh and record species code of all the trees larger than the diameter cut-off including 

the non commercial species – since they do contribute to the biomass on the plot.  

• Measure total tree height to the top of the tree– not merchantable height.  

• Smaller trees can be counted by size class and species on a smaller subplot coinciding with the 

center (so the location coordinates are known and can be subset from the lidar data. Smaller 

trees do not contribute as much biomass reflections to the total point cloud, especially when 

overgrown by older growth trees.  

• For each plotID record:   
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o Project name, name of the field tech, and plot ID,   

o plot size, (used to calculate per acre inventory equivalents)  

o time  and date of measurement (a backup check to relate GPS locations afterwards),  

o general condition of the plot (poor – soils depleted of all nutrients because of fire might 

result in stumped trees, rich—favorable water conditions might result in taller trees than 

average conditions). This description will help when plots don’t fit the trend of the 

regression analysis.  

o Tree list for each plotID:  

▪ treeID,   

▪ species (2 letter alpha-code used in FVS),   

▪ diameter,   

▪ height for 2 dominant and 2 co-dominant trees (to check against calculated 

heights or to evaluate if existing regional height diameter equations do not work 

well for local conditions),   

▪ condition class (i.e. live/dead),   

▪ Live Crown Ratio (LCR),   

▪ Crown class (dominant, co-dominant, intermediate, overtopped or remnant).  

• Other vegetation: ocular estimate of cover (example certain percent of plot is shrub while also 

listing dominant and subdominant species and include an overall height estimate.  

• Mark the plot center (just in case it has to be revisited). 

• Mark the trees as they are measured with chalk or spray paint (to avoid measuring trees more 

than once or missing a tree).  

• Give field crew instructions related to moving the plot location within reason (to capture a single 

condition, to take care of large edge trees) and how and when to increase the plot size. A note of 

caution: plot conditions at a more accessible location might look the same as the conditions of the 

preselected location. However, the field crew may not be aware of the characteristics that 

contributed to the plot being selected and substituting the plot conditions of a selected plot with 

one of their choice can interfere with the goal of capturing the range of variability.  

• Make the field crew aware of the benefit of taking good notes about plot and surrounding 

conditions. 

• Take photos at the plots (might help explain problems establishing the relationships between the 

field data and the lidar variables).  

GPS procedures  

The three components of ensuring that the field data will correspond to the lidar data are: 1) ensuring the 

field data is collected within one year of lidar acquisition, 2) ensure that field measurements correspond to 

the lidar 3-D plot cylinder, and 3) ensure that the field plot and the lidar plot are precisely co-located.  This 

third component--recording accurate plot locations is a very important because if the field data cannot be 

spatially correlated to their corresponding lidar data metrics, all is lost.  Field plot locations should be 

measured with GPS within 1 meter of their true location.  

GPS receivers can be classified into three major groups each with different technological capabilities and 

corresponding price ranges:  

1. Recreational grade receivers.  These are inexpensive receivers but also the least accurate.  

They are unacceptable for correlating the ground plot locations with the lidar plot locations.  They 

can be used to navigate to the general vicinity of the plot—but should not be used for anything 

more. 
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2. Mapping grade receivers.  While not as accurate as the survey grade receivers (discussed next), 

mapping grade receivers strike a good balance between accuracy, ease-of-use, and cost.  

Typically, they are the receiver of choice for this type of project.  Using standard GPS data 

collection procedures, all mapping grade receivers will typically produce positions with under-

canopy accuracies that are well within 5 meters of the true location.  If the mapping grade 

receiver is capable of receiving and processing both L1 and L2 signals (this requires an 

additional external L1/L2 antenna), the under-canopy accuracy should be within a meter of the 

true location—this is the recommended accuracy and recommended GPS configuration.  Note: 

even with the dual frequency (L1/L2) receivers, you must differentially correct the GPS data to 

achieve the desired accuracy. 

3. Survey grade receivers.  This type of receiver exceeds the accuracy required for this type of 

project.  Given the high cost, steep learning curve, and more stringent use requirements, survey 

grade receivers are not considered to be the best choice.  

Assistance is available for current hardware recommendations, training, and support through the Field 

Data Automation—Mobile Computing (FDAMC) website:  

http://fsweb.wo.fs.fed.us/irm/fdamc/ 

In addition, GPS and Mobile GIS help is available through the Forest Service Helpdesk. 

Plot Data processing – preparing the forestry and corresponding lidar 

variables for modeling 
After all the data are collected, they need to be processed and prepared for modeling.  The goal is to 

process the field inventory and the lidar data to ensure they correspond as much as possible.  This will 

entail summarizing the field inventory data to the plot level (e.g. instead of a height measurement for each 

tree in the plot, a single height value for the entire plot will be calculated), and creating corresponding 

lidar metrics from the plot locations. The end product of this step of the workflow will be a single flat table 

that contains a record for each of the field plots. Each plot record will include the field plot information, the 

GPS location, and the corresponding lidar metrics.  The number of fields or columns depends on which 

attributes will be predicted (Table 1).   

The final flat table needs to have every field (cell, variable) populated for every record (plotID, or row). 

Blank cells or nodata cells are not allowed for either the predictor or the response variables during the 

linear regression modeling – a single blank cell for a record will result in that record being excluded from 

the analysis.  The time required to clean and fully populate the final table is usually underestimated. 

Table 1: Type of variables in the flat table that will become the model input table:  

Data Source  Corresponding fields 

1. Field plots Plot ID, forest variables to be estimated (inventory variables, 

biomass, fuels, other). 

2. GPS data  XY locations.  These are not required for modeling; they are only 

used to facilitate linking the field measurements to the lidar data. 

A significant advantage of keeping the XY locations in the table is 

that it allows you to spatially display the data in ArcMap. 

http://fsweb.wo.fs.fed.us/irm/fdamc/
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3.Lidar plot data  Lidar cloud metrics divided in the following categories: Return 

counts above the canopy cut-off (depends on max number returns 

per pulse recorded) statistical descriptors (16 fields), canopy 

density enumerators (12 fields).  Note these data are based on 

version 2.90 of FUSION (McGaughey 2010). 

 

The remainder of this section provides brief descriptions of the post-processing methodology required for 

each of the 3 data sets.  Preparation of the field plot data and GPS data can be accomplished in a variety 

of software packages.   Generating the lidar plot data from the lidar data will be described using the 

FUSION software package. 

Generating forest modeling variables from the field plot data  

To be able to use the field measurements, it is required to convert the measurements for each tree to the 

desired attributes. If the data were captured in a table, spreadsheet of inventory specific program on PDA 

or a data logger, it is only as matter of transferring the data and formatting the already digital information 

into the right format compatible with the processing software that will be used (FSVeg, FVS, etc.).    

The following information is required for each tree at every ground plot:  

• Plot number  
• Tree ID  
• Plot size  
• 2-digit tree species code  
• DBH  

• Live/death  (coded by live = 1 and death = 0)  
In preparation for modeling, the measurements for each tree (above) must be converted to the desired 

tree attributes (described below) and then summarized to the plot level.  This can be a complex process 

for the uninitiated.  We recommend that you recruit local expertise if your team does not already possess 

these skills.   

When local expertise is not available, a spreadsheet can be created that can do the job--and the learning 

curve for the spreadsheet will not be as steep as learning an inventory-centric software package.  This 

procedure requires downloading an Excel DLL plug-in from the National Volume Estimator Library 

(NVEL), and installing it (http://www.fs.fed.us/fmsc/measure/volume/nvel/index.php). For each species 

measured in the field, the equation that is most suited to calculate the tree volume needs to be extracted 

from the database.    

Since the calculated volumes depend on the species specific tree height, the height needs to be 

calculated as well. The heights are calculated from the DBH measurements according to a height-

diameter formula. These formulas and the required coefficients are species and region specific.  The 

coefficients can be found in section 4.1 of one of the 20 regional FVS variant documents available at:  

http://www.fs.fed.us/fmsc/fvs/variants/index.shtml  

Desired Tree Attributes.  The following tree attributes will be calculated and/or used based on the 
ground plot tree measurements:  

• Tree height(ft)  
• Basal Area (sqft/ac)  
• Live BA  
• TPA and live TPA  
• Ht * Live_BA (used in the next plot summary section to calculate Lorey’s height)  

http://www.fs.fed.us/fmsc/measure/volume/nvel/index.php
http://www.fs.fed.us/fmsc/fvs/variants/index.shtml
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• Live tree volume data   

• live volume in cubic feet (cuft) per tree  

• live volume in merchantable board feet (bdft) per tree  
 
The ground plot tree measurements have to be summarized to the plot level by operations in Table 2. 

 

Table 2:  ‘Tree fields’ needed to summarize to the plot level  

Input field Summary operation 

Plot-ID known 

Plot size known 

BA sum 

Live BA sum 

TPA (trees/acre) sum 

Live TPA sum 

Ht * Live BA sum 

Live volume (cuft)/tree sum 

Live volume (bdft/tree) sum 

 
Finally, you may want to calculate four more variables in the plot level data sheet5:  

 

Variable Formula 

Lorey’s height = (Ht * live_BA) / Live_BA-cell 
QMD =((( Live_BA_sqft_ac / Live_TPA)/PI())^0.5)*2*12  
Live volume cuft per acre =( Live_Vol_cuft_tree /plotsize)  
Live merchantable volume bdft per acre =( Live_Merch_bdft_tree/plotsize)  
Note: QMD ^0.5 = square root; 2*12 are conversion factors from radius to diameter (2) and feet to 
inches (12) 

 
This concludes calculating the forest inventory variables from the field measurements and summarizing 
them to the plot level. The forest variables that will be estimated at the landscape scale need to be 
exported to a separate flat table, including the plot-ID.  They will be joined with the corresponding plot 
lidar derived metrics at the end of this section. 

Post processing GPS data   

The GPS data must be differentially corrected.  Note: since these are point data, the average of all the 
points measured at each of the plot locations will yield the most accurate position.  The positions need to 
be converted to the same datum, units, and planimetric coordinate system as the lidar data.  
  
The last step involves checking the plot ID (or assigning it, if that was not done before) and confirming the 
date and time for the GPS location corresponds to the time and date the plot was actually measured in 
the field (by checking the field notes). Linking all the pieces of information together is best done using a 
relational table link in a database (Access or ArcGIS). The plot-ID will become the key field used to link 
the pieces of information (forest variables, XY GPS locations and lidar metrics) together.  Making sure the 
plot-ID is named exactly the same way in the 3 datasets will make it easier to relate the data into a single 
record.  

 
5 The four additional variables documented are simply examples, many more could be potentially 
generated. 
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Generating lidar predictor variables   

At the plot scale  

 Once the XY coordinates for each of the plots are available, the last step in the data preparation process 
consists of subsetting the lidar returns that correspond to each field plot. During the subsetting process 
the data are normalized to the ground surface so the returns are expressed in terms of heights above the 
ground instead of in elevation. After subsetting the lidar plot equivalents, the last step consists of 
calculating a set of 47 cloud metrics variables for each of the plots. All but one is calculated using the 
FUSION function, the remaining one is derived in a spreadsheet. These variables will be used as the 
predictor variables in the linear regression modeling.  

 Clipping the area corresponding to each field plot from the lidar data  

 This step in the workflow is fairly straightforward once the single batch file that subsets all the ground 
plots is created. Creating this batch file might look daunting at first glance but is not that hard once all the 
needed components listed below are in place:  

1. A list of the plot-IDs with their lower left and upper right bounding box coordinates  
2. A list of all the high spatial resolution bare earth surfaces, usually delivered by the vendor  
3. A list of all the LAS files  

 
The batch file will have a separate command line for each of the plots that is clipped from the lidar 
acquisition. Each line in the batch file has to following basic structure (McGaughey 2010):  
  

ClipData [switches] InputSpecifier SampleFile [MinX MinY MaxX MaxY]  
   
A more detailed workflow is described in the exercises.   

Generating cloud metrics for the lidar plots  

Once the lidar returns corresponding to the ground plots are extracted, the last step includes summarizing 
the lidar returns for each plot in a set of variables representative of the vertical distribution of the forest 
structure.  These numerically summarizing variables make it possible to describe lidar plots during the 
analytical and quantitative modeling. Details of the FUSION syntax are listed in the Fusion Manual. The 

command has the following structure (McGaughey 2010):   
  
CloudMetrics [switches] InputDataSpecifier OutputFileName  
  
Each record in the output cloudmetrics.csv has a set of variables (fields) that together describe the 
vertical distribution of the lidar points (representative of the biomass) within the plot (Table 3). Once the 
cloudmetrics file is generated, the lidar data preparation is finished.  
  

Table 3: Groups of lidar plot variables generated by cloudmetrics (McGaughey 2010):  

Category Output variable 

Descriptive Total number of returns  
Count of returns by return number  
Minimum  
Maximum  
Mean  
Median (output as 50th percentile)  
Mode  
Standard deviation  
Variance  
Coefficient of variation  
Interquartile distance  
Skewness  
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Kurtosis  
AAD (Average Absolute Deviation)  
L-moments (L1, L2, L3, L4)  
L-moment skewness  
L-moment kurtosis  

Height percentile 
values 

(1st, 5th, 10th , 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 
95th, 99th percentiles)  

Canopy related metrics 
(calculated when the 
/above:# switch is used  

Percentage of first returns above a specified height (canopy cover 
estimate)  
Percentage of first returns above the mean height/elevation  
Percentage of first returns above the mode height/elevation  
Percentage of all returns above a specified height  
Percentage of all returns above the mean height/elevation  
Percentage of all returns above the mode height/elevation  
Number of returns above a specified height / total first returns * 100  
Number of returns above the mean height / total first returns * 100  
Number of returns above the mode height / total first returns * 100  

Others See FUSION manual 

Generating the table with the to-be-estimated forest variables and the lidar predictor variables  

Before generating the predictive models from the data described in this section, one last step is required: 
combining both the forest variables derived from the field data and the cloudmetrics variables from their 
corresponding lidar plot into a single flat table. This table will have as many records as there were usable 
field plots. Every cell in this table should have a value. The XY locations are not required for the 
modeling, however, the table can be used in ArcGIS if they are included. The best way to join the data 
into a single table is by relating the different pieces (field data and lidar data) based on the plot-ID. It can 
be done in a spreadsheet but there is significant potential for making mistakes. When a spreadsheet is 
used, both tables should be ordered in the same order using the plot-id (make sure the same naming 
convention is used in both tables and that there is no ambiguity in the plot names). Both sets of variables 
can be pasted into the table and the final output table is ready to start the modeling.  
 

Generate Lidar Metrics for the Landscape 
This step in the process can be done later if desired; however, we discuss it here to draw your attention to 
the relationship of Fusion’s cloudmetrics command and Fusion’s gridmetrics command.  While there are 
significant differences in how the two Fusion commands are implemented, they generate the same output 
variables.  Cloudmetrics generates its output from the lidar cloud within the boundaries of the 3-D plot 
while Gridmetrics generates the same output based on the lidar cloud within the boundaries of each 3-D 
grid cell—across an entire grid.  In other words, the output of Gridmetrics is the same as Cloudmetrics but 
it will be a continuous raster grid for each of the output variables. 
 
After the regression models are developed, these grids will be the input variables or the predictor 
variables, to which the models are applied resulting in an estimated forest attribute of interest - also in 
grid format - at the landscape scale.   
  
One of the Gridmetrics parameters is the cell size of the final raster data. Currently it is recommended to 
select a cell size that corresponds to the area of the field plots (because that was the spatial area used to 
establish the relationship and has been shown to work)—Table 4. It might be possible to extrapolate the 
relationships to another cell size but research to prove this works or how much error this might introduce 
are not yet available.   
  
Table 4: relationship of 0.1 and 0.2 acre plots to gridmetrics cell size  
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Plot size Radius in ft. Cell size Radius in m Cell size 
0.1 acres (1/10th)  
 
(1 acres = 10 chains)  

37.23 ft 1 chain2 
(1 chain=66ft.) 

11.34 m 20 m 

0.2 acres (1/5th)  
only used when there are less 
than 8 dominant and co-
dominant trees on the plot.  

52/66 ft. NA 16/05 m NA 

  
The layers generated by this process are the same as those from the cloudmetrics. When topographic 
layers are used, additional layers can be created. For additional details and specifics of which columns to 
extract out of the intermediary CSV files check the fusion manual (McGaughey 2010) and available RSAC 
training modules.   

Data processing conclusion  
 This section illustrated how the plot data, GPS data, and the lidar data should be processed at the plot 
scale--and the landscape scale for the lidar data. The plot level data are used to develop the models to 
estimate the forest inventory variables while lidar metrics at the landscape scale will be used to apply the 
regression models at the landscape scale. 

Developing Statistical Models. 
Developing a valid statistical model is a complex task and detailed instructions for developing statistical 

models are far beyond the scope of this document.  We will, however, provide general considerations and 

guidelines that will help ensure a statistical model that represents conditions in the field.  Our first 

suggestion: if statistical expertise is lacking within your team, we strongly recommend that you consult a 

statistician or biometrician for this portion of your project.  

While there are a number of options for developing statistical models, we’ll focus primarily on linear 

regression6.  Detailed regression equations with their summary tables and corresponding graphs for 

forestry inventory models is documented in the Colville National Forest project report (Reutebuch and 

others 2010). In addition, the use of regression equations for biomass and fuels estimations is 

documented by Andersen and others (2005). 

Existing studies indicate linear regression works best in conifer dominated forests; the predictions are not 

as good in mixed forests. The models cannot be applied universally and have to be developed on an area 

by area basis.   

Linear regression is a parametric statistical method.  Parametric methods provide superior models to non-

parametric methods—but, parametric methods make several important assumptions about the underlying 

data (normality, homogeneity of variance, independence, etc.).  Exploratory data analysis and 

 
6 All of the analysis can be accomplished in the R environment (http://cran.r-project.org/).  R is an open source 

statistical software package which becomes a lot easier to use with a few additional open source add-ons such as 

TINN-R (data editor), R-commander (GUI for many statistical functions) and Rattle (GUI for data mining).   In 

addition, the Remote Sensing Applications Center has developed lidar data-analysis tools to streamline the process 

of building statistical models. The tools guide the analyst through model building and provide tests of the statistical 

validity of relationships between field plot and lidar data. These tools include options for using regression modeling or 

Random Forests to model forest inventory parameters thus, the tool is flexible while also offering safeguards to avoid 

using inappropriate statistical-analysis techniques. 

http://cran.r-project.org/
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computation of univariate statistics should be conducted prior to linear regression analysis to see if 

parametric assumptions are valid and to get a general feel for the data.  If you should discover that the 

parametric assumptions are violated, there are mathematical transformations that may be used to force 

the response variables into a normal distribution. 

The objective of modeling is to define the best equation that represents the trend between the two sets of 

variables and represents reality. Care should be taken to fit the trend and not over-fit the individual data 

points. During the regression analysis using the R-squared value is a good gage for the model fit but the 

quest for the best R-squared can lead to over-fitting the data. The best model follows the general 

principles of parsimony:  

• Models should have as few parameters as possible, 

• Linear models should be preferred to non-linear models,  

• Experiments relying on few assumptions should be preferred to those relying on many, 

• Models should be pared down until they are minimal but adequate, 

• Simple explanations should be preferred to complex explanations.  

Most predictive lidar based models should not have more than three variables generally representing 

some form of the three metrics listed below: 

• One related to height (a percentile variable),   

• One related to canopy cover and,   

• One describing the variation in the data (standard deviation or variance).  

Another important requirement for an appropriate linear regression model is that the data are related 

linearly.  If that assumption is violated, there may again be transformations that can be applied to create a 

more linear relationship.  Even when the data are linearly related, there is danger in extrapolating the 

modeled relationship beyond the range of the field-collected data.  Extrapolation problems are addressed 

by following the critical characteristics of the forest inventory data (outlined previously): you must have 

enough plots for statistical validity and the plots must cover the full range of variability of the 

measurement of interest. 

Linear regression modeling – generalized workflow in R  
The following table outlines the regression model workflow (Table 5). The workflow is similar when 
other software packages are used but the specific R-commands listed in the table will obviously not 
work.  

Table 5. Regression Model Workflow for R. 

Step 
# 

Procedure or Command  Explanation 

1 Run a Best subset regression (BSR) model for all the forest 
response variables  
 

Check to see which are 
common predictor variables to 
models or where substitutions 
can be made. This reduces the 
number of predictor variables 
to work with  

2 Pick the first forest variable and run a BSR using the subset 
of the predictor variables 

Pick the best linear models 
from the output table 

3 Run the linear regression model selected in the step above  
Model<-lm(response~predicted variables)  
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4 Evaluate the model output  
Summary(model)  

 

5 Plot the diagnostic graphs  
oldpar <- par(oma=c(0,0,3,0), mfrow=c(2,2))  
plot(model)  
par(oldpar)  

Check visually for regression 
assumptions and outliers and 
unusual data points  
 

6 If there are outliers (visual and Bonferroni test), rerun the 
model excluding the observations deemed outliers  
-c(observation), next run –c(observation1, observation2)…  

Check for regression 
assumptions and outliers  
 

7 If the Q-Q-plot of the residuals is not normally distributed, 
check if a boxcox transformation would resolve this  
Boxcox(model)  

Evaluate the graph and 
determine the power of the 
transform  
 

8 Transform the response variable, rerun the lm model  
Transformed Model<-(transformed-y~ predictor variables), 
create summary and plots  

Evaluate if the errors are 
normal and there are no more 
outliers  
 

9 If there is more than one predictor variable, check the 
variance inflation factor  
Vif(transformed Model)  

Make sure there is no 
collinearity between the 
predictor variables  
 

10 Once an acceptable model is generated, extract the 
information required to build the regression equation from 
the model summary table as well as the R-squared and the 
adj R-squared (to plot onto the graph in step 13)  
 

Build the regression equation  
 

11 Extract the model RSE Backtransform the regression 
equation and calculate the 
correction factor  

12 Start over from step 2 and repeat the procedure for the 
next forest variable. If more outliers are detected while 
developing subsequent models, the previous model(s) need 
to be regenerated also excluding the outliers from 
following models.  
 

 

13 Once all the desired models from the same data set are 
generated and all the regression equations are built, there 
is one more step to do: plot the observed values against the 
plotted values. 
  
response_Pred<-fitted(model)  
response_Obs<-(transform(file$column)[-
c(outlier_observations)])  
plot(lmodel_Obs,model_Pred)  
lines(c(0,100000), c(0,100000))  
title(main="transform(model)~predictor variables", 
sub="Residual standard error: ####; Adjusted R-squared: 

Creates a scatterplot of 
observed values against the 
fitted values. This shows 
visually the fit of the model.  
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####")  

  
 

Summary—Developing the Statistical Model 
At the end of the regression analysis, there will be one predictive model for each of the forest variables 

that were derived from the field measurements. The fit of the models should be high (in the 0.6 to 0.8 

adjusted R-squared range) if the field data and the location data were measured accurately and the 

models were developed employing good forestry principles in combination with good statistical judgment7.   

A Final Note: RandomForest classification provides an alternative to linear regression modeling.  While it 

still requires statistical expertise, the process can be far less complex—especially if the RSAC data 

analysis tools are used.  However, this approach has been used far less than linear regression modeling 

and the cost-benefits are not fully known yet. 

Generate Estimated Forest Inventory Data at the Landscape Scale   
 At this point in the process all of the heavy lifting has been completed—you’re almost ready to apply 
the models that you’ve created.  However, prior to applying the models, you should use the data you 
have to create a Forest/non-Forest Mask.  The mask is desirable since areas without trees are of little 
interest to estimate forest attributes and the mask will reduce errors.  In young forests characterized by 
recent regeneration the predictions are usually below the range of field measured data. Under these 
conditions estimated attributes are extrapolated outside the range of values from which the models 
were created and the results can be highly erroneous. Non-forested areas and areas with immature 
forests are better excluded from the inventory predictions by creating a Forest/Non-forest mask.  
  
The forest/non-forest mask layer is obtained by combining the results of 2 separate conditions:  

Condition Remark 

Canopy Cover ≥ 2 %  
This value can be set to any value that is 
appropriate for local conditions 

90th Elevation percentile height  often  canopy cut-off value used for the project ≥ 
3m or 10ft  

  
Some vegetation mapping applications use a forest/non-forest cut-off value of 10% for canopy cover. A 
stricter cut-off value can always be imposed on the estimated attributes after they are generated. Once 
each of the individual forest masks is created, it is important that cells with zero values are reclassified 
to ‘NoData’ and each layer is saved or exported with a meaningful and recognizable grid name.  A 
combined forest/non-forest mask is then easily created by multiplying the grids of the 2 previous 
conditions. The last preparatory step consists of visually checking the mask against another source of 
high resolution imagery such as NAIP (ideally acquired during the same year as the year the lidar data 
were collected) making sure that areas for which no forest attributes will be estimated are indeed non 
forested areas. If this visual check is satisfactory, the final mask should be saved and the spatial analysis 
mask should be set to this forest/non-forest mask.  
  

 
7 Even if the best procedures are used, there remains the possibility that the lidar metrics are not closely 

related to the corresponding field measurements and the modeling efforts will not be successful. 
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Estimating Forest Attributes At the Landscape Level: Applying the Models in 

ArcGIS  
 Applying the statistical models in ArcGIS is likely the fastest step to perform of the entire analysis 
process.  The statistically-derived equations from the modeling process are used in the ArcGIS Spatial 
Analyst environment.  However, instead of the plot cloud metrics predictor variables that were used to 
generate the equations, you will substitute the corresponding grid metric layers.  The output of each 
calculation is a new grid in which each cell spatially represents the estimated variable of interest derived 
from the lidar data.  The output regression equations for six response variables is provided in the 
following table (Table 6). 
 

Table 6. Example regression equations for six response variables. 

 Response variable Regression Equations 

1 LHT_ft = 24.41 + 0.753(ElevP80) 

2 (LBA_3in_sqftac) = sqr(-5.11 + 0.198*(ElevP90) -0.2777*(ElevSD) + 
0.114*(PC1stRtsCC))+3.003  

3 (LTPA_3in) = exp(3.67 -0.005*(ElevP80) +0.029*(PC1stRtsCC))*1.108  

4 (LQMD) = exp(1.68 + 0.015*(ElevP80) -0.004*(PC1stRtsCC ))*1.033  

5 (LV_cuftac) = sqr(-52.52 +0.954*(ElevP90) + 0.647*(PC1stRtsCC ))+150.660  

6 (LMV_bfacc) = sqr9-138.68 +2.452*(ElevP90) + 1.399*(PC1stRtsCC))+952.957  

 

Basic Quality Check Of The Estimated Attributes.   
Short of going into the field to check the prediction outputs, the result can be evaluated using a few 
simple steps:  
  

• Take a few random locations and check the raster values against the corresponding lidar point 
cloud. Although this is not a direct quantitative comparison, the height and the vertical 
distribution of the points should be indicative of the feasibility: examples raster cells with high 
volumetric values should correspond to field conditions that can yield these numbers.  

• Compare the data range of each of the predicted variables to their ground plot ranges. The 
differences can be represented as percent differences in tabular form.   

• Pixels having values either 10% less or more outside the plot range can be flagged using a 
conditional statement. These grids can be incorporated in further models or analysis.  

 

Deriving Second Generation Forest Attribute Layers 
Once the models have been successfully run, the results can be used as input variables for other models 
or to calculate spatially explicit forest information that uses these variables as input. The principle is the 
same as the one used to predict the forest attributes listed previously, the only difference being that the 
estimated attribute grids are substituted in the raster calculator equations for lidar metric grids as 
shown in the examples listed in the following table (Table 7).  
  
Table 7: 2nd generation derived forest attributes based on the initial set of lidar inventory forest ones   

Index Formula 

SCD (stand density index) TPA(QMD/10)^1.604  

QMD (based on predicted BA) sqrt(BA/(0.005454*TPA) when BA is in sqft/ac and qmd in inches  

RD (Curtis’ Relative Density) BA/sqrt(QMD) 
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All these data sets can be used for further ecological, habitat and other resources related modeling.   
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