

 Geospatial Technology and Applications Center | EXERCISE 4 | 1

Last Updated: March 2022

EXERCISE 4

Run LT-GEE to map disturbance

Photo by Sebastien Pichler on Unsplash

Introduction
Now that you have explored the LT-GEE algorithm and learned how to fit trajectories to map change,
you are ready to learn how to run the algorithm in the Earth Engine code editor to make a map! In the
last exercise, you used UI tools to obtain a set of parameters for segmenting change on the Dixie NF in
the area affected by the 2017 Brian Head fire. In this exercise, we will use those parameters and our
knowledge of image processing to build and execute a complete LandTrendr script and download
results.

Objectives
▪ Use the LT-GEE module to build, process Landsat Time Series data and run LandTrendr

▪ Create and download a map from LT-GEE output

Required Data
▪ Everything is in Earth Engine!

Prerequisites
▪ An approved Earth Engine account

▪ Read access to the EMAPR LT-GEE public repository (click this link to add if necessary)

▪ Completion of exercises 2 and 3 for Advanced Change Detection. Optionally, review the
provided script for completion of exercise 2.

https://code.earthengine.google.com/?accept_repo=users/emaprlab/public
https://code.earthengine.google.com/?scriptPath=users%2FUSFS_GTAC%2FGTAC-Training%3AAdvChangeDetection%2F02_Exercises%2FEx2_exploreLTS
https://unsplash.com/@pichler_sebastian

 Geospatial Technology and Applications Center | EXERCISE 4 | 2

Table of Contents
Part 1: Explore information on LT-GEE outputs ... 3

Part 2: Review the example script for mapping loss ... 5

Part 3: Adapt and run the script to get a disturbance map .. 6

Part 4: Appendix..11

 Geospatial Technology and Applications Center | EXERCISE 4 | 3

Part 1: Explore information on LT-GEE outputs

The core process of LandTrendr is segmentation of Landsat image pixel values through time. The Pixel
Time Series Plotter tool visualizes the linear segmentation and model fitting that the LandTrendr
algorithm applies to each pixel in an area of interest. The Change Mapper tool visualizes these products
over a landscape. But how do we extract map layers to use for our own analyses or visualization? This
process can seem a bit complicated at first. To get a feel for what map products the LT-GEE algorithm
produces, we will start by reviewing the documentation.

A. Review documentation on LT-GEE outputs
1. Navigate to this link in the LT-GEE documentation and review the diagram illustrating data

returned by LT-GEE.

2. Note that LT-GEE returns the following:

i. The year of observations and whether each year represents a vertex (i.e., a turning point
or change year).

ii. The original source values before segmentation (i.e., composite NBR value).

iii. The fitted values (i.e., the model fitted NBR value).

iv. The root mean square error or difference between fitted and source (observed) values.

3. Note that the LT-GEE outputs need to be ‘unpacked’ in order to create a disturbance map.

i. There are example code snippets for ‘extracting’ various outputs from the image bands
returned in a LandTrendr result image object.

B. Review LT-GEE documentation on working with outputs

https://emaprlab.users.earthengine.app/view/lt-gee-pixel-time-series
https://emaprlab.users.earthengine.app/view/lt-gee-pixel-time-series
https://emaprlab.users.earthengine.app/view/lt-gee-change-mapper
https://emapr.github.io/LT-GEE/lt-gee-outputs.html

 Geospatial Technology and Applications Center | EXERCISE 4 | 4

1. Using the menu on the left, navigate to section 6 to learn how to work with LandTrendr
outputs in Earth Engine

2. Read just the introduction section titled “Working with outputs”.

There is a lot of information in the documentation and you certainly don’t need to understand all of it. If
all of this stuff about projecting and flattening arrays sounds complicated to you, you are not alone!
Working with complex arrays can be quite confusing and take some time to get used to. Luckily, reading
the documentation, we find that the developers behind the LT-GEE module have created shortcut
functions to make extracting map products much easier! We will look at these next.

C. Review API functions for running LandTrendr
1. Use the navigation on the left to open the documentation on LT-GEE functions.

2. Scroll down to section 9.1 for the documentation of the central functions implemented by LT-
GEE.

3. Read the description of the buildSRcollection function.

i. This function is the initial processing step in preparing imagery for use in the LandTrendr
analysis. It creates annual composites for the years of interest, applying specified masks,
and returns an image collection where each year is represented by one image.

4. Read the description of the buildLTcollection function.

i. After the initial image collection is created by the buildSRcollection function, this function
adds the spectral transformations with the first band being the index you want to use for
segmentation. In our case, this will be NBR.

5. Read the description of the runLT function.

i. This is the command that takes parameters for LandTrendr and initializes the algorithm.

ii. runLT takes the image processing parameters we explored, as well as the segmentation
parameters that we found using the Pixel Time Series Plotter.

iii. We can see that this function is a wrapper around the now-familiar buildSRcollection and
buildLTcollection.

D. Read the docs on shortcut functions to extracting map layers
1. Scroll down or use the menu to navigate to the getChangeMap function and read the

description.

https://emapr.github.io/LT-GEE/api.html#functions

 Geospatial Technology and Applications Center | EXERCISE 4 | 5

i. This function takes the output of the LandTrendr segmentation from the runLT function
and a set of change parameters.

ii. This sounds good and so much easier than slicing complex arrays with JavaScript!

iii. The change parameters are the same parameters that we explored with the LandTrendr
Change Mapper tool and are illustrated nicely in the graphic below from the
documentation.

Perfect! We now have all the pieces that we need to run LandTrendr in the EE Code Editor where we can
save or download our resulting change map data!

Part 2: Review the example script for mapping loss

The LT-GEE module documentation comes with example scripts that we can easily adapt to our study

area. We will first review to ensure we understand how all the pieces fit together. Then, we will pass in

the variables for our example study area affected by the Brian Head fire.

A. Open an example script for mapping vegetation loss.
1. In the documentation, use the menu to navigate to the Example Scripts section (section 7).

2. Read the section titled Map vegetation loss. This is the script that we will use as a template
for creating a disturbance map for the Dixie NF Brian Head area.

3. Right click on the link the Example script and select Open link in new tab (shown below).

i. This will open the script in the code editor.

B. Review the user inputs
1. Lines 1-20 provide contact information and resources for learning more about LT-GEE.

2. Lines 27-33 define the parameters for the Landsat Time Series processing including years,
seasonal dates, masking parameters and the spectral index to use for segmentation.

https://emapr.github.io/LT-GEE/example-scripts.html

 Geospatial Technology and Applications Center | EXERCISE 4 | 6

3. Lines 36-45 creates a JavaScript object (also called a dictionary) for the LandTrendr
segmentation parameters.

i. Here, we will use the parameters we found with the UI Pixel Time Series Plotter.

4. Lines 48-56 define the parameters for ‘unpacking’ the LandTrendr output to obtain a
disturbance map.

i. These are the parameters we explored with the UI Change Mapper.

C. Review the main script body
1. Read through lines 63-105 and check your knowledge.

i. Where and how are the special LT-GEE functions being imported?

ii. Can you differentiate the LT-GEE functions from Earth Engine functions?

(a) Hint – look for the module name, ltgee, followed by dot notation.

iii. Where is the LandTrendr segmentation process being called?

iv. Where is the disturbance map getting created?

v. What kind of JavaScript objects are the following: changeImg, pallete, magVizParms and
region? If you don’t know the answer, how could you use the code editor to find out?

2. Answers appear in the appendix!

Note: You do not necessarily need to edit any of the JavaScript after the user inputs section in order to
run this script and generate a disturbance map. However, it is a good idea to see how things work and to
test your knowledge. You might find that much of the code in this script is familiar if you take your time
going through it, unraveling it bit by bit. You could create something like this on your own with some
patience and practice!

Part 3: Adapt and run the script to get a disturbance
map

You have now seen all the pieces that you need to run LandTrendr in the Code Editor to obtain a

disturbance map. We will refer to the parameters we found using the two UI applications, edit the

script, run it and download our results.

A. Add notes and save your copy of the script
1. On line 21 add a commented note like the one shown below.

2. Click the Save button and select Save as to save this script to your own repository. If the save

button is disabled, make sure you have made changes by adding notes to save this in your
own repository.

 Geospatial Technology and Applications Center | EXERCISE 4 | 7

3. Type the path to your course folder and give the script a name like the one shown below.

4. Click OK

B. Edit the user input parameters
1. Change the endYear parameter to the integer value 2019 so that we get the two available

post fire years.

2. Change the string value for the startDay parameter to '07-10' as we did in the UI app

3. Change the coordinates for the study area to refer to the Dixie NF point we have been
exploring. Use the code below:

var aoi = ee.Geometry.Point(-112.73836, 37.75617);

4. Keep the index value set at ‘NBR’ as this was our chosen index.

5. Don’t change the array values for the masking parameters.

C. Review the LandTrendr segmentation parameters
1. The variable runParams defines the object of parameter values to use for segmentation. We

explored these values in the previous exercise using the Pixel Time Series Plotter and found
these defaults to be suitable, so no need to change anything here. As was noted in Exercise 3,
the Pixel Time Series Plotter is an acceptable but not quantitatively-robust way to select
parameters for the model.

D. Review the change mapping parameters for the disturbance map.
1. The changeParams variable is an object with the parameters for extracting a change map

from the LT-GEE outputs.

2. This object contains nested objects which is a very common pattern in JavaScript.

 Geospatial Technology and Applications Center | EXERCISE 4 | 8

3. The initial values in here are the same as those we explored with the UI Change Mapper App.

E. Update the year and magnitude parameter objects
1. In the changeParams object, locate the year key and change the start and end values in the

nested object to match the years we explored previously 1985 to 2019.

2. In the changeParams object, locate the mag key (magnitude) and change the value to 100.

i. This will ensure that we don’t omit the slow, gradual change from the spruce beetle
mortality.

ii. Check your understanding: how does lowering the value for mag help us detect slower,
more gradual change?

3. You can keep the remaining values at their defaults here, matching the values that we
evaluated with the UI Change Mapper App.

4. The object should look like the code below:

// define change parameters

var changeParams = {

 delta: "loss",

 sort: "greatest",

 year: { checked: true, start: 1985, end: 2019 },

 mag: { checked: true, value: 100, operator: ">" },

 dur: { checked: true, value: 4, operator: "<" },

 preval: { checked: true, value: 300, operator: ">" },

 mmu: { checked: true, value: 11 },

};

Note: In this set of change parameters, we are specifying that we want to export the disturbance

representing the ‘greatest’ vegetation loss disturbance. We saw earlier with the UI app that in this area,
this will generate a map showing primarily the 2017 Brian Head fire. If we instead wanted to create a
map showing the extent of the spruce beetle mortality, we could change the value for sort to be either
‘oldest’ or ‘slowest’ as we explored in the last exercise. Refer to the documentation for the
getChangeMap function for more info on the valid parameters you can provide here.

F. Reduce the size of the exported disturbance map
1. Scroll down into the main script until you find where the region variable is declared.

i. This should be on or close to line 99 depending on what additional comments you might
have added.

2. The code here chains two ee.Feature methods to get a bounding box for exporting the final
map.

3. The method ee.Feature.buffer function simply buffers the feature by the distance provided.
In this case, no projection argument is provided so it is buffering our point by 100,000 meters
or 100 km.

G. Reduce the size of the exported map to increase speed
1. Change this value to 10,000 so that it only buffers by 10 km.

 Geospatial Technology and Applications Center | EXERCISE 4 | 9

2. The resulting code should look like the line below:

var region = aoi.buffer(10000).bounds();

H. Update export parameters
1. Especially as you adapt scripts like this for your own use, you will likely need to change file

names, adjust the CRS to match your other inputs, or adjust other parameters.

2. In this case, we need to replace the export command with a function to export to a Google
Cloud Project, rather than Google Drive. If you are unfamiliar with Google Cloud Projects and
do not yet have a Bucket set up, review and complete Intro to Geospatial Scripting in
Javascript Exercise 1, Part 5.

3. Copy the code below to replace the section that begins with “export change data to google
drive”

// export change data to cloud project

var region = aoi.buffer(10000).bounds();

var exportImg = changeImg.clip(region).unmask(0).short();

Export.image.toCloudStorage({

 image: exportImg,

 description: 'lt-gee_disturbance_map',

 bucket: 'lleatherman-gtactrainingstudents',

 fileNamePrefix: 'lt-gee_disturbance_map',

 region: region,

 scale: 30,

 crs: 'EPSG:5070',

 maxPixels: 1e13

});

4. Review the code and update the bucket parameter to your appropriate bucket. Make sure
you are working in the correct Cloud Project. The GTAC-Training-Students cloud project is a
great place to export this image.

I. Save and run your script!
1. Click Save to save your script.

2. Click Run to and wait while processing takes place.

3. You can compare your script to the one found within the course repository.

J. Export your disturbance map.
1. As soon as you see the Tasks tab turn gold in the upper right-hand panel, you are ready to

export.

2. Click on the Tasks tab and you should see the export task (below)

3. Click the RUN button

https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/GeospatialScripting_GEE/GeospatialScripting_in_GoogleEarthEngine_CourseMaterials/Exercises/2022/02_PDFs/GeospatialScripting_JavaScript_Exercise1_CodeEditor.pdf
https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/GeospatialScripting_GEE/GeospatialScripting_in_GoogleEarthEngine_CourseMaterials/Exercises/2022/02_PDFs/GeospatialScripting_JavaScript_Exercise1_CodeEditor.pdf
https://code.earthengine.google.com/?scriptPath=users%2FUSFS_GTAC%2FGTAC-Training%3AAdvChangeDetection%2F02_Exercises%2FEx4_mapDisturbance

 Geospatial Technology and Applications Center | EXERCISE 4 | 10

4. The Task: Initiate image export dialogue will appear.

5. Feel free to accept the defaults-- or change the task name or filename. You can also adjust
these parameters in the script itself!

6. When you are ready, click the Run button to initiate the export.

7. When the export job has completed, it will look like the graphic below.

8. Navigate to you’re the Google Cloud Project Browser and locate your bucket.

i. Click on your bucket to open it, and check for your exported disturbance map.

ii. Download the map. Now, you can inspect or perform additional analyses on it in your
preferred desktop GIS software.

iii. To review how to export images from Google Cloud Project, review Intro to Geospatial
Scripting in Javascript Exercise 3, Part 3.

Congratulations! You have successfully completed this exercise and gone through the complete
process of running the LandTrendr algorithm in Earth Engine. You learned how to follow

documentation for using a complex JavaScript library, use example code and adapt scripts for
your own analyses.

https://console.cloud.google.com/storage/browser?project=gtac-training-students&prefix=
https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/GeospatialScripting_GEE/GeospatialScripting_in_GoogleEarthEngine_CourseMaterials/Exercises/2022/02_PDFs/GeospatialScripting_JavaScript_Exercise3_FunctionsExports.pdf
https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/GeospatialScripting_GEE/GeospatialScripting_in_GoogleEarthEngine_CourseMaterials/Exercises/2022/02_PDFs/GeospatialScripting_JavaScript_Exercise3_FunctionsExports.pdf

 Geospatial Technology and Applications Center | EXERCISE 4 | 11

Part 4: Appendix

A. Answers to questions in Part 2C
1. Where and how are the special LT-GEE functions being imported?

i. Line 63

var ltgee = require('users/emaprlab/public:Modules/LandTrendr.js');

2. Can you differentiate the LT-GEE functions from Earth Engine functions?

i. The LT-GEE functions begin with “lt.gee”. E.g., line 69

var lt = ltgee.runLT(startYear, endYear, startDay, endDay, aoi, index, [], runPar

ams, maskThese);

3. Where is the LandTrendr segmentation process being called?

i. Line 69

var lt = ltgee.runLT(startYear, endYear, startDay, endDay, aoi, index, [], runPar

ams, maskThese);

4. Where is the disturbance map getting created?

i. Line 72

var changeImg = ltgee.getChangeMap(lt, changeParams);

5. What kind of JavaScript objects are the following: changeImg, pallete, magVizParms and
region? If you don’t know the answer, how could you use the code editor to find out?

i. changeImg: Image

ii. pallete : list

iii. magVizParms : dictionary

iv. region : polygon

v. You can use the code editor to write a “print” command for each object, and then inspect
the results in the Console. E.g.,

print(region)

