

Introduction to Change Detection

Lecture 5: Data access + applications

Instructor: Lila Leatherman (they/them)

November 17-18, 2021

High Resolution Data Resources

- FS EDW and Image Services
 - NAIP Imagery
- Google Earth Engine
 - NAIP Imagery (and others)
- Digital Globe
 - WorldView-2 and WorldView-3 image search + view capabilities
- USGS Earth Explorer
 - Limited WorldView-2 and WorldView-3 imagery
- Planet
 - Basemaps available for select states, imagery starting April 2021
- USGS CIDR request portal (use in moderation)
 - Request archived high-resolution imagery
 - Request future acquisitions of high-resolution imagery
- GTAC High Resolution Imagery access tutorial
 - For identifying WorldView Imagery and requesting through Earth Explorer
 + CIDR

Moderate Resolution Imagery Resources

(10-30m resolution)

- USGS Earth Explorer
 - Landsat Analysis Ready Data (ARD)
 - Level-2 Data Products
- Copernicus
 - Sentinel-2 data
- Sentinel Hub EO Browser
- Google Earth Engine (GEE)
 - Sentinel-2, Landsat, and many more
 - Tutorial to get started, from GEE
 - GTAC GEE Training Repository with example code
- GTAC Sentinel-2 Imagery Acquisition tutorial
 - For downloading via the Copernicus portal

- WorldView data
 - Digital Globe <u>Discover to browse</u>, <u>G-EGD to download</u>
 - Requires authorization to create an account

Submit <u>CIDR request</u> for specific new imagery

acquisitions

- Sentinel-2 Data
 - Copernicus via the European Space Agency

- Google Earth Engine tutorials
 - From GEE
 - From GTAC

- Tutorials on image access developed for FHP
- Obtaining Remotely Sensed Imagery webinar + self-paced tutorial

Data Resources - Disturbance Mapping Projects

- USFS/partner programs
 - Fire Mapping
 - BAER (Burned Area Emergency Response), RAVG (Rapid Assessment of Vegetation after wildfire), MTBS (Monitoring Trends in Burn Severity) and more...
 - Forest Health and Disturbance Monitoring
 - FHAAST (Forest Health Assessment and Applied Sciences Team)
- More programs and partnerships
 - USGS/NASA, research institutions, Google Earth Engine, etc.

Fire Effects Data Products - BAER

- Burned Area Reflectance Classification (BARC)
 - 1-7 days post containment

Fire Effects Data Products - RAVG

- RAVG Severity layers and tables
 - 30-45 days post containment
 - All fires >1000 acres on USFS land

Fire Effects Data Products - MTBS

- Burn Severity layers from MTBS
 - Assessed 12-18 months post containment
 - All fires >1000 acres on USFS land

Image-Based Change Estimation (ICE)

- What is it?
 - Sampling approach using image-based interpretations to quickly estimate land cover and land use change
 - When no change present, 5 points
 - When change present, 45 points
 - All points attributed with LULC
 - Completed for all lower 48 states
 - Interpretation cycle follows NAIP's schedule

No change

Change

Change Detection Products Guide

- Overview of operationally ready change detection methods for rapid, accurate, and repeatable estimates of tree mortality and defoliation events across large spatial extents
- Link to the Change Detection Products Guide

Products and Links

- Delta Viewer
- High-Resolution Forest Mapping System (HiForm)
- ForWarn II
- Landscape Automated Monitoring and Detection Algorithm (LAMDA)
- LandTrendr
- LCMS

Delta Viewer

- Delta Viewer Hub Site
- Near real-time, every 5 days
- Spatial Resolution: 20m
- Imagery: Sentinel 2
- Method: Two-date change Detection, uses multiple spectral Indices

2020 DeltaViewer output near Thompson Falls, Montana

2020 WorldView Imagery of Thompson Falls, Montana

High Resolution Forest Mapping System (HiForm)

- HiForm
- Near real-time, every 5 days
- Spatial Resolution: 20m
- Imagery: Sentinel 2 and Landsat
- Method: Two-date change Detection of NDVI
- Easy-to use GEE script

2020 WorldView Imagery of Thompson Falls, Montana

High Resolution Forest Mapping System (HiForm)

2020 WorldView Imagery of Thompson Falls, Montana

ForWarn II

ForWarn II

- Near real time every 8 days
- Spatial Resolution: 250m
- Imagery: MODIS
- Method: multi-date differencing of NDVI
- Can filter by landcover type

2020 For Warn II output near Thompson Falls, Montana

2020 WorldView Imagery of Thompson Falls, Montana

ForWarn II

2020 ForWarn II output near Thompson Falls, Montana

2020 WorldView Imagery of Thompson Falls, Montana

Landscape Automated Monitoring and Detection Algorithm (LAMDA)

2020 WorldView Imagery of Thompson Falls, Montana

Landscape Automated Monitoring and Detection Algorithm (LAMDA)

2020 LAMDA output near Thompson Falls, Montana

2020 WorldView Imagery of Thompson Falls, Montana

LandTrendr

- Annual
- Spatial Resolution: 30m
- Imagery: Landsat
- Method: Trend analysis
- Extensive documentation
- Requires at least 5 years of data input

2020 LandTrendr output near Thompson Falls, Montana

2020 WorldView Imagery of Thompson Falls, Montana

LandTrendr

2020 LandTrendr output near Thompson Falls, Montana

2020 WorldView Imagery of Thompson Falls, Montana

Landscape Change Monitoring System (LCMS)

2020 WorldView Imagery of Thompson Falls, Montana

Landscape Change Monitoring System (LCMS)

2020 LCMS output near Thompson Falls, Montana

2020 WorldView Imagery of Thompson Falls, Montana

1:25,000 scale

GTAC Remote Sensing Contacts

Point of Contact	Specialization	Email
Indigo Catton	Image interpretation, data portals, ArcGIS Pro, segmentation	indigo.catton@usda.gov
Kain Kutz	Object-based Image Analysis, Raster Geoprocessing, UAS	kain.kutz@usda.gov
Lila Leatherman	Change detection, Image classification, R & Earth Engine scripting, modeling	<u>Lila.Leatherman@usda.gov</u>
Jeremy Webb	Aerial Photography, Photogrammetry, UAS	jeremy.webb@usda.gov
Mark Hammond	ERDAS and Data Services, Photogrammetry	mark.hammond@usda.gov
Shiona Howard	Lidar Acquisition, Analysis, and Support, Python scripting	Shiona.Howard@usda.gov

Geospatial Training and Awareness page

GTAC Remote Sensing Contacts

Areas of expertise	Name	Contact
Land cover classification, geospatial scripting in R and Google Earth Engine	Juliette Bateman	Juliette.bateman@usda.gov
Image interpretation, data portals, ArcGIS Pro, segmentation	Indigo Catton	Indigo.catton@usda.gov
Change detection, scripting in R and Google Earth Engine, machine learning, forest health	Jamie Chaitman	Jamieson.chaitman@usda.gov
Lidar data acquisition and analysis, python scripting	Shiona Howard	Shiona.howard@usda.gov
Change detection, scripting in R and Google Earth Engine, machine learning, forest health	Lila Leatherman	Lila.leatherman@usda.gov
eCognition, image segmentation, image classification	Wyatt McCurdy	Wyatt.mccurdy@usda.gov
Habitat suitability modeling, scripting in R and python, ArcGIS desktop	Marie Schleicher	Marie.schleicher@usda.gov
Aerial photography, photogrammetry, UAS	Jeremy Webb	Jeremy.webb@usda.gov

Questions?

Lila.Leatherman@usda.gov