

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 1

Exercise 1: Introduction to the Code
Editor and Data Archive

Introduction
Google Earth Engine is a cloud-based geospatial processing platform. It is available through Python and
JavaScript Application Program Interfaces (APIs). The JavaScript API is accessible via a web-based
Integrated Development Environment (IDE) called the Code Editor which is what you’ll be using for this
training. The Code Editor offers access to the full power of Earth Engine. This platform is where users
can write and execute scripts to share and repeat geospatial analysis and processing workflows.

In this exercise, you will learn about the Code Editor platform and explore some basic scripting concepts
in JavaScript. Some basic coding and JavaScript knowledge is required to use the Earth Engine Code
Editor. If you've never written any code before and this tutorial is too advanced, you may want to look
at GTAC's Introduction to Geospatial Scripting course. This course has some reminder and overview of
basic scripting, but that material is not covered in depth.

https://earthengine.google.com/

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 2

Table of Contents
Part 1: Introduction to the Code Editor IDE ... 3

Part 2: Working with Images .. 4

Part 3: Run an example script and review the results ... 10

Part 4: (optional) Explore Data Available in Earth Engine ... 14

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 3

Part 1: Introduction to the Code Editor IDE

In this exercise, you will work in the Google Earth Engine Code Editor. This platform offers significantly

more flexibility than the GUI based Explorer platform. You have the ability to create complex and

customized analysis workflows. In the Code Editor you will write JavaScript code to access and analyze

imagery. Because of Earth Engine's cloud computing architecture, there are some unique JavaScript

classes that will also be covered in this course.

A. Explore the JavaScript Code Editor
1. In your Google Chrome web browser navigate to the following URL:

https://code.earthengine.google.com/

i. When/if prompted, click Allow to let the Earth Engine Code Editor access your Google
Account.

ii. This will take you to the Code Editor interface shown below.

2. Use the graphic above to guide you and click through the tabs in the upper left hand Scripts

and Documentation panel.

i. Under the Scripts tab in the upper left, click the Examples dropdown and note the wide
variety of preloaded example scripts that demonstrate capabilities and offer code that
you can use for your analyses. You can take a look at these to start to learn about what
kinds of things Earth Engine can do. After you create and save a script later in the training,
it will be available here in your Private repository.

ii. Click the Docs tab, also in the upper left, there is a searchable list of documentation for
the predefined GEE classes and methods. Note these are grouped and organized by class.

https://explorer.earthengine.google.com/
https://code.earthengine.google.com/

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 4

iii. Briefly explore what kinds of methods and functions are available in GEE for different
classes.

(a) Select one of interest and click on it to see the information window with a
description of the methods and associated arguments (required and optional). Any
optional arguments are italicized. (The example scripts include examples of many of
Earth Engine methods and their arguments. Try searching for them using the scripts
search bar.)

3. Using the graphic above click through the tabs in the upper right hand panel where the
Inspector, Console, and Tasks tabs are located.

i. You will use the Inspector (similar to the identify tool in ArcMap) to easily get information
about layers in the map at specified points (specified by clicking in the Map Panel).

ii. The Console is used to return messages as the scripts run and print information about the
data, intermediate products and results. It also records any diagnostic messages, such as
information about runtime errors.

iii. The Tasks tab is used to manage the exporting of data and results.

4. Click on the Help button in the upper right and select Feature Tour to learn more about each
component of the API.

i. Click through the options in the Feature tour to become more familiar with each
component of the Code Editor.

Part 2: Working with Images

A. Open a new script
1. Open the Code Editor webpage in Google Chrome, if it is not already open:

https://code.earthengine.google.com/

i. If you already have the code editor open, but have a script loaded, click on the dropdown
arrow adjacent to the Reset button and select Clear script.

https://code.earthengine.google.com/

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 5

B. Create a variable representing a single Landsat 8 image
1. Use the code in the box below to create a variable representing an ee.Image object for a 2014

Landsat 8 image.

i. Copy and paste the code below into the Code Editor Code Editor.

// Get the image.

var lc8_image = ee.Image('LANDSAT/LC8_L1T_TOA/LC80450322014244LGN00');

Notes about JavaScript syntax: There’s a lot going on in just two lines. Take a closer look at the pieces of

this statement you’re loading into GEE (remember that if this statement is completely foreign to you, you

should consider looking at the Introduction to Geospatial Scripting course for a more detailed

explanation of the scripting language). The numbers below give you a quick reminder of some of the

important points in the two lines.

1) Double forward slashes, //, are comment characters in JavaScript. These prevent text on that line from

executing. These are useful for creating notes in your code.

2) Variables are declared in JavaScript using the keyword var. Variables can be numbers, strings, images,

features, etc. Variables are used to store information for use later on in the script. In the case of the

statement above, you are naming the variable lc8_image and using it to refer to the raster dataset you

are interested in analyzing.

3) ee.Image() is a GEE class designation that tells GEE that you want to load an ee.Image object (and in

this case, save it as a variable called ‘lc8_image’). Earth Engine classes all begin with ee. The parentheses

at the end let you define which object of the ee.Image class type you're loading from the data catalog. In

this case, the parameter you are specifying inside the parentheses is the image ID.

A generalized version of the statement above is: ee.Image(‘image_id’). The ‘image_id’ is the image that

you would like to load ('LANDSAT/LC8_L1T_TOA/LC81290502015036LGN00') and reference with the

variable (lc8_image).

4) The syntax for specifying the image ID in this function (ee.Image) is to surround the string of

characters (the image ID, 'LANDSAT/LC8_L1T_TOA/LC81290502015036LGN00') in quotes. The image id is

in quotes because the collection and image name together is a string. Strings are sets of characters that

in this example, name the specific dataset.

5) JavaScript statements end with a semicolon.

Click the Run button and note that nothing happens in the map or the console. This code
merely creates the variable, nothing is printed or displayed.

C. Add the image to the Code Editor map
1. Copy and paste, or type, the code below into your script. These additional lines will add the

Landsat image to the map panel. Add these lines below the code from the previous step. GEE
will execute the code (lines) sequentially when you hit Run.

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 6

// Add the image to the map.

Map.addLayer(lc8_image);

2. Click on the Run button. This time an image will load in the Map Output window. If you are
not zoomed into the USA, centered on California, you won’t see anything.

i. Use your cursor to navigate (left click and drag) in the map view to California and find the
image you called. It would be nice if the script did this for us, next you will add that
statement into your script.

D. Center and Zoom the map window
Next you will add a statement to set the zoom factor and location on which to center the map

output window. Map.centerObject() is a function that tells GEE where to position the map output

window.

1. Copy and paste the two lines of code (below) underneath the four lines you already have in
the GEE code editor window.

2. Click Run.

// Center the map display on the image.

Map.centerObject(lc8_image, 8);

3. To zoom out, decrease the second input to a number less than 8. To zoom in more, increase
the second input parameter (try 10). Modify your statement so it looks like the two lines
below and

4. Click Run. What happened?

5. In the panel in the upper left click the Docs tab. Type Map.centerObject() into the Docs
search bar. What is the range of the zoom parameter?

// Center map display on the image.

Map.centerObject(lc8_image, 10);

E. Explore the map window tools
1. Explore this image with the Code Editor map viewer tools.

i. You can zoom and pan using the tools on the left of the map output panel (shown in the
following graphic).

ii. Click the check box Layers tool (on the right of the map output panel) to turn the image

(Layer 1) on or off (shown in following image).

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 7

Note: Even though you saved the LANDSAT/LC8_L1T_TOA/LC80450322014244LGN00 image as a

variable named lc8_image, the name of the image is labeled as Layer_1 by default in the Layers Legend

in the output map window. As you will see later, it is possible to change the name that appears in the

Layers tool to something that is more descriptive of the data being displayed.

iii. Swipe the transparency lever (the sliding bar to the right of the layer name in the
preceding image). This will make the ‘Layer 1’ transparent, revealing the base map
underneath.

F. Change visualization parameters to improve the display
Now you can see the image, however the color parameters are not very well suited to this image.

You will change the visualization parameters next.

1. Open the documentation for addLayer function in the Map group by clicking on the Docs tab
in the left panel in the Code Editor.

i. Expand the Map group and select Map.addLayer from the list (as illustrated below); or

ii. Search for Map.addLayer in the Filter methods… search bar.

2. Review the documentation that appears (shown above). This provides information about the
use and arguments for this function.

i. Notice that some input options (such as vis) are italicized in the documentation. This
means that these are optional parameters that can be specified or left out of the
Map.addLayer statement. If you want to skip an optional parameter use “undefined” as a
place holder. See the statement below for an example.

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 8

// Add the image to the map and name the layer in the map window.

Map.addLayer(lc8_image, undefined, 'Landsat8scene');

There are a number of options available to adjust how images are displayed. The inputs that are most

commonly used to modify display settings include the following:

Bands: allows the user to specify which bands to render as red, green, and blue.

Min and max: sets the stretch range of the colors. The range is dependent on the data type. For example

unsigned 16-bit imagery has a total range of 0 to 65,536. This option lets you set the display to a subset

of that range.

Palette: specifies the color palette used to display information. You will see how to use this option later

in the tutorial.

Naming convention (in the Layers Legend): you can specify the name that appears in the layers legend

here as well. You named this layer ‘Landsat8scene’ in the code above.

Syntax: Most of these optional parameters are entered as a key-value pair in a dictionary object. The

syntax is:

{vis_param1: number, number, number

vis_param2: 'string, string, string',

// or an array of strings like this:

vis_param2: ['string', 'string', 'string']}

3. Modify the Map.addLayer() function to display the image as a false color composite and apply
a stretch to improve the display. Modify the Map.addLayer() statement from the previous
steps to look like the code below. The statement below includes the optional parameters for
which bands to display (bands 6, 5, and 4), specifies a stretch to improve the visualization, and
finally gives the image a display name.

// Add the image to map as a false color composite.

Map.addLayer(lc8_image, {bands: 'B6,B5,B4', min: 0.05, max: 0.8,

gamma: 1.6}, 'Landsat8falseColor');

4. Click Run and use the map tools to explore the result. Note that the name under the Layers
(legend) is now Landsat8falseColor.

Note: In the statement above, the names of the bands have been inserted for you already. If you wanted

to look them up yourself, you can use the print function (or the Inspector) to identify what the bands are

named (e.g., B6, B5, B4).

5. You can also specify the bands as strings in a list. Look at the statement below, it will do the
same thing as the statement above. Do you notice the difference in syntax?

// Add the image to map as a false color composite.

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 9

Map.addLayer(lc8_image, {bands: ['B6', 'B5', 'B4'], min: 0.05, max:

0.8, gamma: 1.6}, 'Landsat8falseColor');

G. Explore the Inspector window
1. Click on the Inspector Tab in the upper right hand corner of the Earth Engine Code Editor

interface. Your cursor will now change to a cross hairs when you place it in the map window.

2. Now click anywhere on the map using the Inspector (the cross hairs) to identify pixel values
for each band in your image at the selected location. Refer to following graphic for example
output.

3. Now examine information about the image in the console. You'll need to use a print

statement. Copy and paste the following statement in your code editor. Then click Run.

// Print the image information.

print(lc8_image);

4. Now in the Console tab, click on the arrow next to Image LANDSAT/… to display the image
properties. Then click on the arrow next to bands: to display the band properties. This will
reveal that the first band (indexed at 0) is called “B1”, the second (indexed at 1) is called “B2”,
etc. Refer to following graphic for an example.

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 10

Note: To learn about band combinations for viewing Landsat 8 and Landsat 5 or 7, check out this

comparison of Landsat bands: http://landsat.usgs.gov/L8_band_combos.php.

5. Click the Save button in the upper right of the Code Editor panel to save your example script
for future reference.

i. Name this script "Visualize a Landsat 8 image".

Note: There are many more options for visualizing data in the map window, such as setting a mask or

mosaicking two data sets together.

Part 3: Run an example script and review the results

A. The Examples Section
1. Click on the Scripts tab in the left-hand panel and expand the Examples group.

2. Scroll down until you see the Image group. Click on the triangle to expand this group if
necessary.

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 11

3. Select the Normalized Difference script from the list of example scripts (stored within the
Image group). It will copy the script into your Code Editor panel.

4. The graphic below shows the script that should appear in the Code Editor panel (upper center
panel).

5. Read the Normalized Difference script, line by line (or statement by statement), to see what it
is doing:

i. Lines 1 to 6 are comment lines the developer included to describe the script. Line
comments are designated with the //, the double slashes at the beginning of the line.
Comments are ignored by the Code Editor when the script executes.

ii. Line 8 accomplishes two things. It declares a variable, called img. It then assigns a value to
this variable. The value is a MODIS image
ee.Image('MOD09GA/MOD09GA_005_2012_03_09').

iii. Line 9 does several things. It declares and assigns a value to a variable, called ndvi. It also
calls the Earth Engine NormalizedDifference method and applies it to the variable “img”
defined in the previous line. The bands “sur_refl_b02” and “sur_refl_b01” are specified as
inputs to that calculation (arguments to the method). These two bands are the NIR and
Red MODIS bands, so the result of the calculation is a Normalized Difference Vegetation
Index (NDVI) image. This calculated NDVI image is what is being assigned to the ndvi
variable. Specifically, it’s an image that represents the computation:

(sur_refl_b02 - sur_refl_b01) / (sur_refl_b02 + sur_refl_b01).

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 12

iv. Lines 10-12 declare a variable, palette, and assign to it an array that specifies a palette of
hexadecimal color codes for displaying the resulting NDVI image. The hexadecimal colors
range from white (FFFFFF) to browns (e.g., CE7E45) to yellows (e.g., FCD163) to greens
(e.g., 529400) to very dark (011301).

Note: You can read more about hexadecimal color codes here http://www.colorhexa.com/.

v. Line 14 centers the map to the area of interest. The arguments, the values inside the
brackets, are the longitude and latitude values for Kansas City, USA; the third value sets
the zoom level.

vi. Lines 15-17 add data to the map output window (lower panel). Two images are displayed
- the img variable, which points to the original MODIS image, and the ndvi variable, which
points to the normalized difference image created in line 9.

6. Click the Run button in the upper-right of the code editor to run the Normalized Difference
script.

i. You should see a MODIS image and the resulting NDVI image appear in the map output
window at the bottom of your screen.

7. Visually examine the results in the map output window using the map viewer tools.

i. Click or mouse-hover on the Layers button in the upper right hand corner of the Map
output panel at the bottom of your screen (shown in the following graphic).

ii. Toggle the NDVI layer on and off by unchecking and checking the box next to the NDVI
Layer.

http://www.colorhexa.com/

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 13

iii. Click and drag the slider-bar back and forth to adjust the transparency of the NDVI layer
and view the MODIS image beneath the NDVI image (see following image, with
visualization parameter box).

8. Use the Inspector Panel to explore the values in the resulting NDVI image.

i. Click on the Inspector tab in the upper right-hand panel.

(a) Hover your cursor over the map. Notice that your cursor has become a cross.

ii. Click anywhere on the map and observe the values that appear in the window under the
Inspector tab.

(a) These are the pixel values at this location for:

(i) MODIS band values for the displayed bands appear under the MODIS image
name.

(ii) The computed NDVI values.

 Geospatial Technology and Applications Center | EXERCISE 1: Intro to Code Editor | 14

Part 4: (optional) Explore Data Available in Earth
Engine

A. The Earth Engine Data Catalog
1. In a web browser, such as Google Chrome, open the Google Earth Engine homepage:

https://earthengine.google.com/.

2. Click on Datasets in the upper right corner. This will give you a quick overview of some of the
data that is available in Earth Engine. Take a moment to read through the information on
imagery, geophysical data, climate and weather, and demographic data.

3. Towards the top of the page you can click View all Datasets to open a new window where
you can search for other data in the catalog that you might be interested in using for your
own scripts.

Congratulations! You've completed this exercise and learned some basics about the code editor
and Earth Engine datasets. In the next exercise you’ll learn to use more Earth Engine methods.

https://earthengine.google.com/

