

Forest Service U.S. DEPARTMENT OF AGRICULTURE

Soil Mapping and Classification in Google Earth Engine

Juliette Bateman (she/her) Remote Sensing Specialist/Trainer, juliette.bateman@usda.gov

Lila Leatherman (they/them) Remote Sensing Specialist/Trainer lila.leatherman@usda.gov

Geospatial Technology and Applications Center | GTAC USDA Forest Service

Day 2: Random Forests

Housekeeping

Keep video off and stay on muteWhen you have questions:

- Raise hand in Teams
- Respond in chat box
- Q + A at the end
- Closed captions are available
- •Take care of your body!

Remember to record!

Day 2 Agenda

Afternoon

- 13:45-14:45 Presentation: Intro to Random Forests
- 14:45-15:00 Demo: (Ex 4.2) Run a Random Forest Regression
 15:00-15:05 Break
- 15:05-15:30 Presentation Accuracy Assessment

Learning objectives

- Understand how Random Forests is distinct from classification and regression trees
- Understand the difference between classification and regression trees
- Learn key parameters and considerations for employing Random Forests

Random Forests

- What: sophisticated ensemble machine learning algorithm
- Who: developed by Leo Breiman and Adele Cutler
 When: 2001
- Why: need to correct for decision trees overfitting training data
- •How: ...we'll get to this in a bit

5

Random Forests

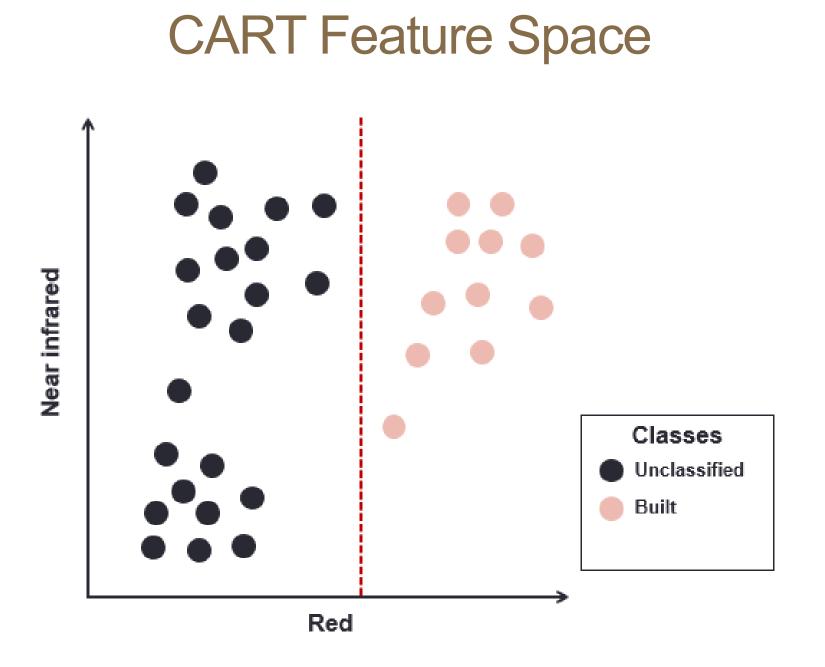
What

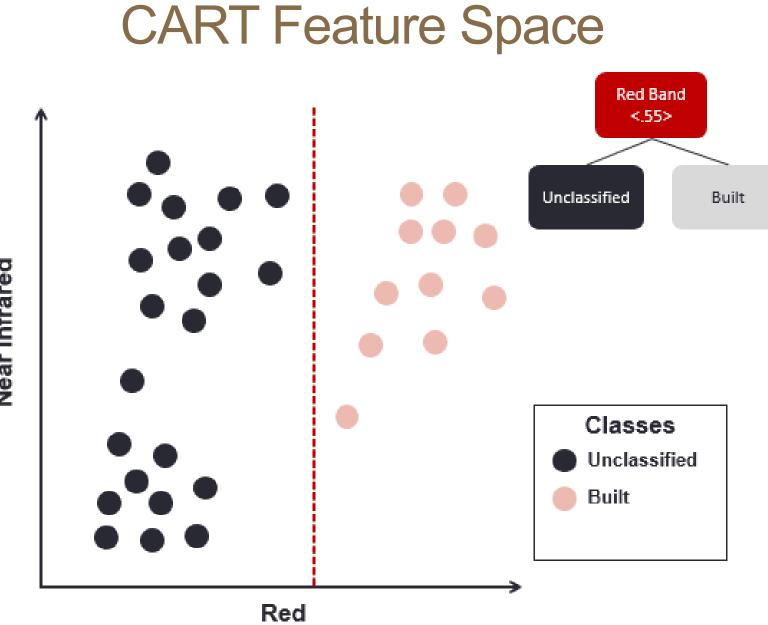
- Sophisticated data mining tool
- Ensemble of decision trees
- Few parameters to set (easy to use for the layman)
- Underlying distribution of data irrelevant (parametric and nonparametric distributions are accepted)
- Not sensitive to bias or effects of high variance

Classification and Regression Trees

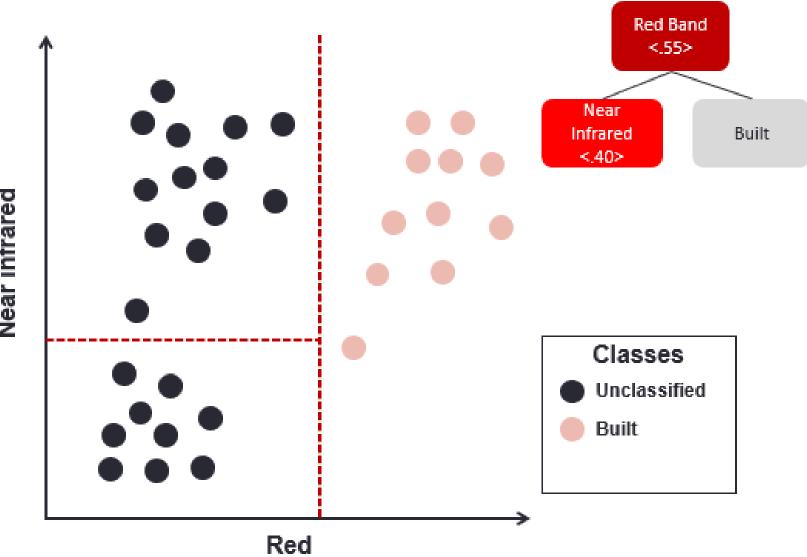
RF is based in CART method How CART works:

- CART seeks the most ideal splitting point and chooses the variable with the highest discriminating power
- Uses an impurity function to test splitting thresholds
- Recursive binary partitioning
 - Recursive (over and over), binary (yes/no questions/criteria), partitioning (splitting the data)

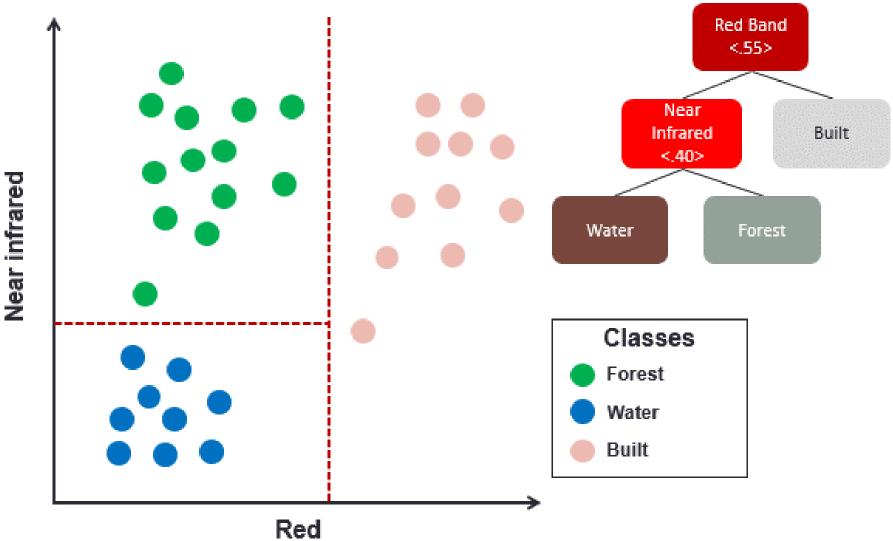




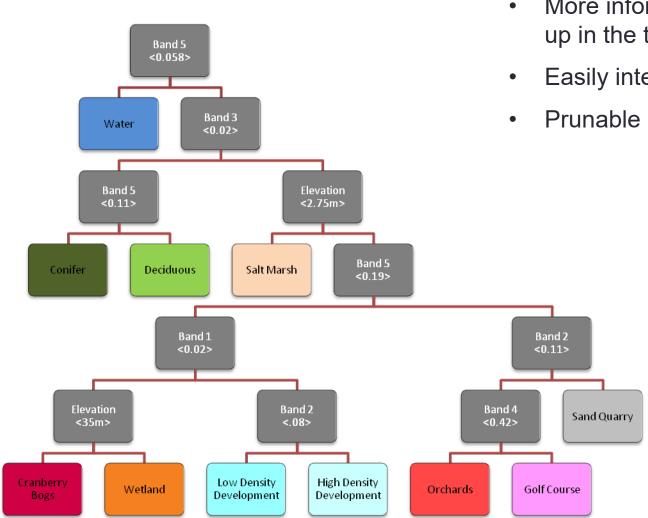
Near infrared



Near infrared



Classification tree example



- More informative splits higher • up in the tree
- Easily interpretable

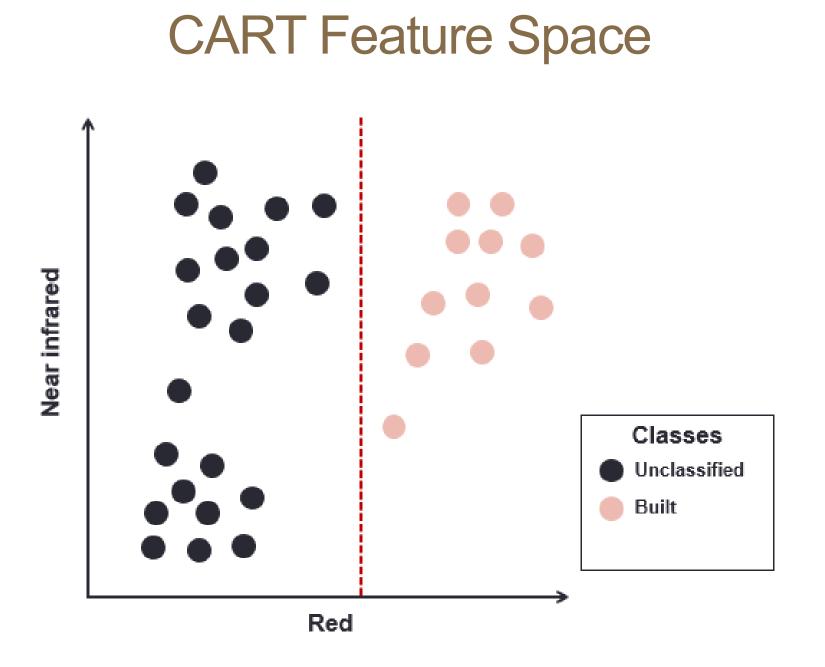
High within-class variability

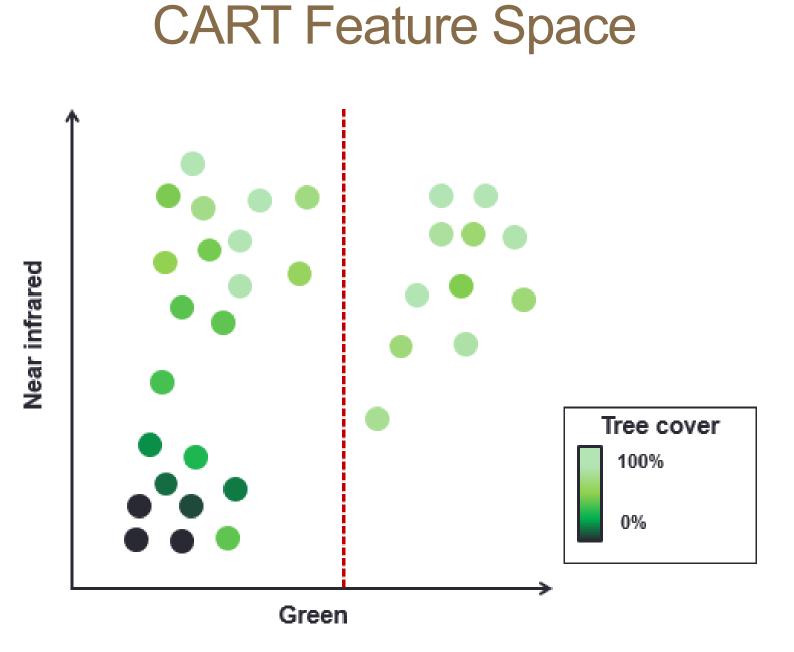
Widely variable sub-pixel mixing effects associated with moderate resolution data

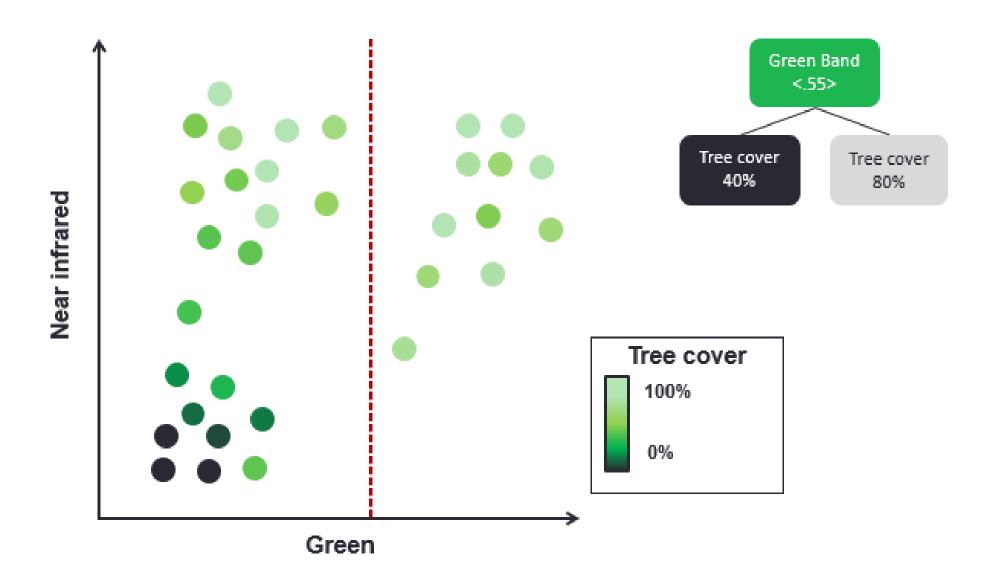


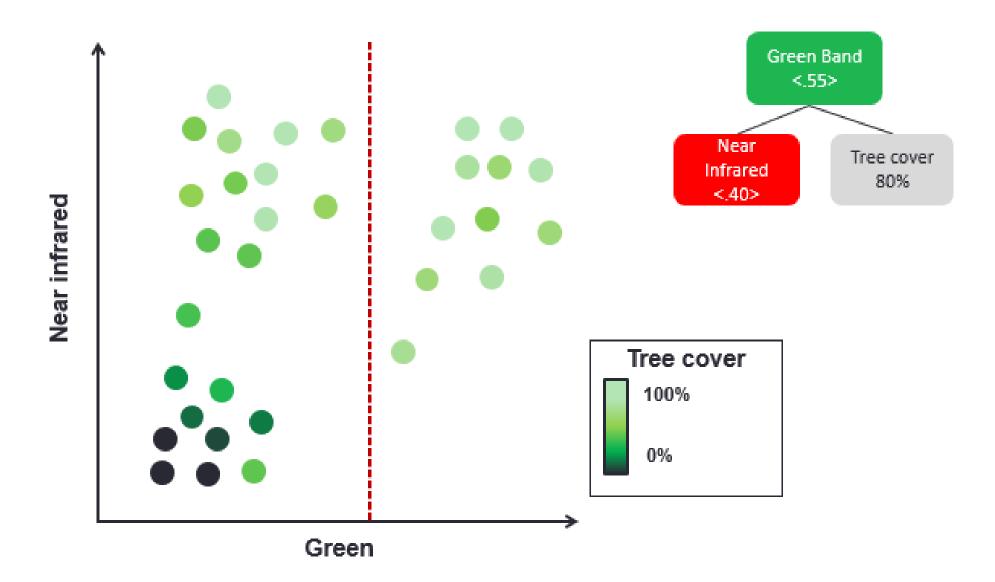
Regression

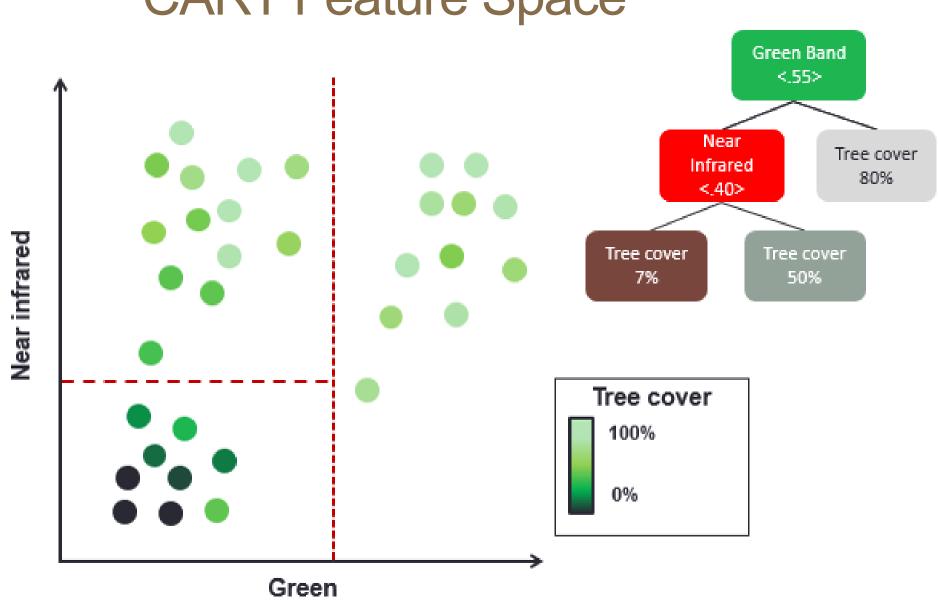
 Works similarly to classification – but assigns continuous values to end "leaves," rather than categorical bins



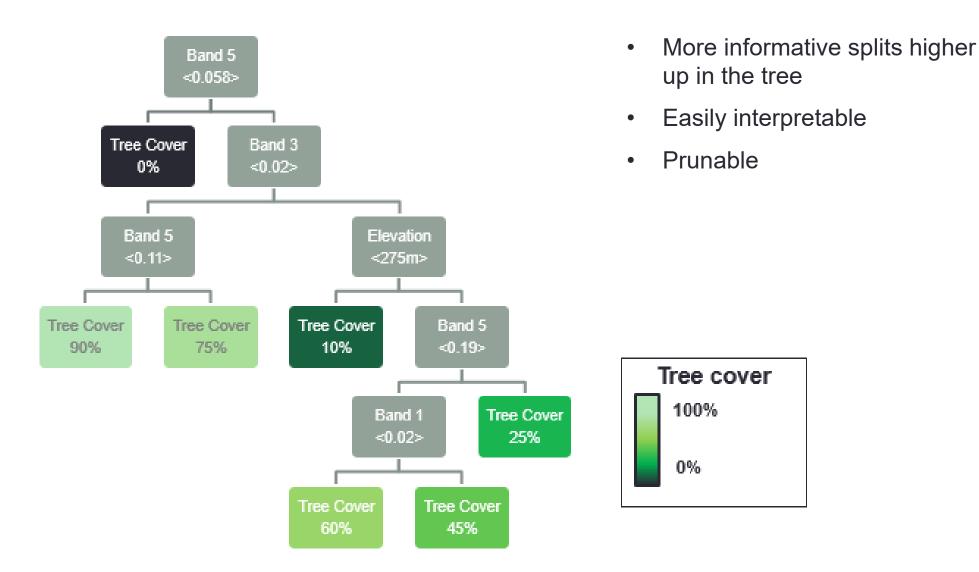








Regression tree example



Regression vs classification

	Classification trees	Regression trees
Input variables	Categorical	Continuous
Predicted value	Category	mean of the response
Evaluation metrics	Confusion matrix and Kappa	RMSE and R ²

Cons of CART

Deterministic

Slight changes in data could drastically change model output

Bias issue

 Some variables have more explanatory power, and they will be chosen over others (which still hold meaningful info)

Overfitting

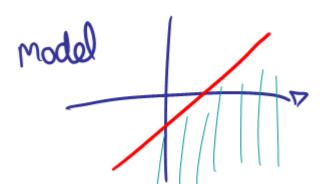
- Splits form around the input data
- Model learns the input data too well
- Certain decisions may be based on illogical splitting rules (though these can be pruned)

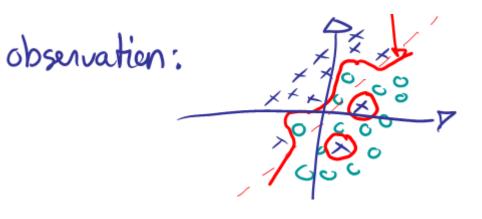
Bias of an estimator

- Difference between estimated value and actual value
- Say I want to predict a certain specific veg type, and I have two variables:
 - Aspect (limited to N, NE, E, SE, S, SW, W, NW)
 - Near Infrared (DN from 0-255)
- Which variable is going to give me the most accurate estimate?

Overfitting

- Overfitting doesn't generalize well (or as well as possible)
 - Given a certain subset, the output model will be biased toward those data
 - Some samples might be more accurate/explanatory than others
- •What does overfitting look like?



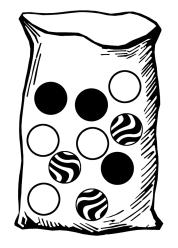


Improving on CART methods

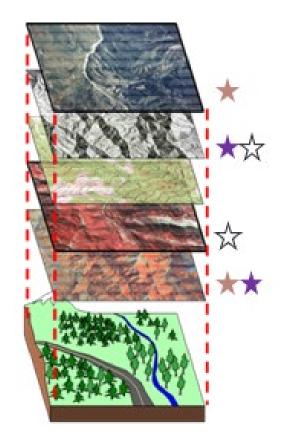
Addressing overfitting

- May see a pattern in the training data that is not representative of the population
 - some splitting rules may not be informative
 - "correlation does not imply causation"
 - Example:
 - 3 women, 2 men
 - Women are wearing glasses; men are not
 - Use glasses as a splitting rule for gender
- Incorporating randomization into model helps to minimize the creation of these spurious decision rules

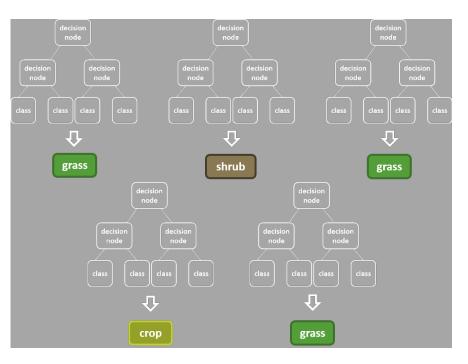
- Bootstrapping
 - Each tree is created with a unique subsample of the training data, selected with replacement



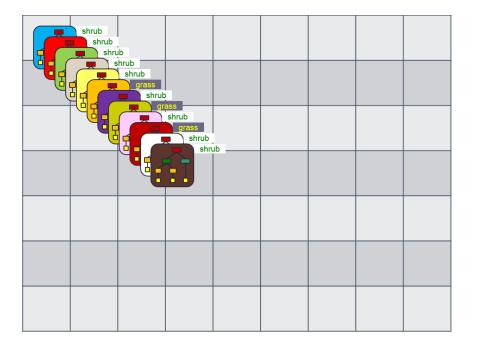
- Each tree is created with a unique subsample of the training data, selected with replacement
- Each decision node uses a random selection of the predictor variables (instead of using all available variables)



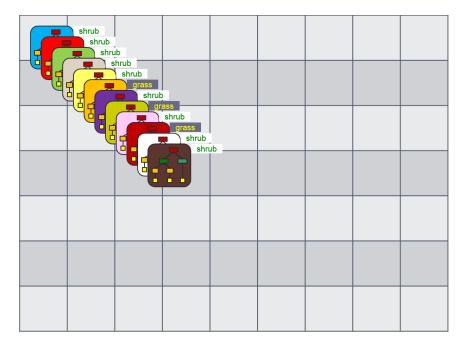
- Each tree is created with a unique subsample of the training data, selected with replacement
- Each decision node uses a random selection of the predictor variables (instead of using all available variables)



- Each tree is created with a unique subsample of the training data, selected with replacement
- Each decision node uses a random selection of the predictor variables (instead of using all available variables)
- Bagging
 - Each tree = one vote; for each pixel, the majority rules in terms of the output classification



- Each tree is created with a unique subsample of the training data, selected with replacement
- Each decision node uses a random selection of the predictor variables (instead of using all available variables)
- Bagging
 - Each tree = one vote; for each pixel, the majority rules in terms of the output classification
- Each tree in the forest is based on a different subset of data, capturing different phenomena/irregularities



How RF works – summary

- Lots of decision trees
- Each tree has a unique subset of training data
- Each decision node is based on a random selection of independent variables
- •Each tree = 1 vote

Parameterization

•# of trees

 How many? Eventually reach a saturation point where additional trees do not improve model

Variables per split

 Usually chosen as the square root of the number of available variables OR set at 2-4

Minimum leaf population

The minimum number of pixels classified by a terminal node

Bag ratio/fraction

• How much of the data should be bagged per tree?

Random Forests as a black box

- Can't see individual trees / choices
- How do we assess which variables are being used?
 Whether they're being used appropriately?
- Variable importance plots
 - Help us to determine the fit of a model

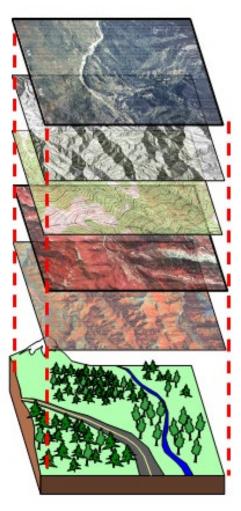
What goes into models?

Training or reference data (point)

 Examples of each class (e.g., conifer, aspen, grass, shrub, road, sagebrush, shadow, water, soil, et cetera)

Predictor variables

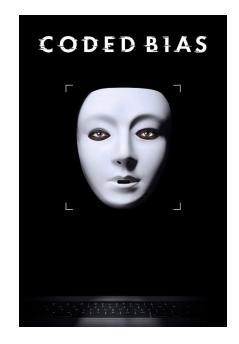
- Multispectral imagery
- Panchromatic imagery
- Derived variables:
 - NDVI
 - Tasseled Cap transformations (brightness, greenness, and wetness)
- Topographic variables:
 - Elevation
 - Slope
 - Aspect
- Bioclimatic variables:
 - Temperature
 - Precipitation
- Environmental variables:
 - Soils
 - Drainage
 - Land-use
 - Ecoregions



References + further reading about machine learning

 Random Forests Overview by Breiman and Cutler

- Interesting Science Friday segment from 11/20/15
 - "Why Machines Discriminate—and How to Fix Them" (27:50)



 <u>Algorithmic Justice League</u> and <u>Coded Bias</u>

S Forest Service U.S. DEPARTMENT OF AGRICULTURE

Questions?

Random Forests

Juliette Bateman (she/her) Remote Sensing Specialist/Trainer, juliette.bateman@usda.gov

Lila Leatherman (they/them) Remote Sensing Specialist/Trainer lila.leatherman@usda.gov

Geospatial Technology and Applications Center | GTAC USDA Forest Service

Mapping Our Future Together

Remote Sensing, Geographic Information Systems, Cartography, Photogrammetry, Training, and Information Services USDA is an equal opportunity employer