

 Geospatial Technology and Applications Center | EXERCISE 3 | 1

GTAC | Exercise 3 | September 2021

EXERCISE 3
Indexing, Conditionals and
Functions
Introduction
This exercise introduces scripting concepts that aren’t specific to any scripting language or geospatial
tool but are necessary to understand to begin writing code.

Objectives
 Become familiar with basic concepts of scripting

 Geospatial Technology and Applications Center | EXERCISE 3 | 2

GTAC | Exercise 3 | September 2021

USDA Non-Discrimination Statement
In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the
USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited
from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual
orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political
beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all
bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print,
audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600
(voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may
be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online
at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in
the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit
your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil
Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email:
program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

 Geospatial Technology and Applications Center | EXERCISE 3 | 3

GTAC | Exercise 3 | September 2021

Table of Contents

Part 1: Conditional Statements .. 4

Part 2: Objects and Methods ... 9

Part 3: Functions .. 11

Part 4: Additional Resources .. 14

 Geospatial Technology and Applications Center | EXERCISE 3 | 4

GTAC | Exercise 3 | September 2021

Part 1: Indexing Variables
Sometimes you only need one part of a variable, especially if that variable is a list or string. Indexing is
specifying a specific character in a variable.

A. Get one character from a variable
The characters (both letters and numbers) within a variable are numbered. This numbering starts at
0 so the first character will be the 0 character. This can be seen below:

1. Create variable FS and have it equal to the string Forest Service then print the variable
2. Index the variable by the first character F

Language Environment Enter Output

Python IDLE or ArcPro print(FS[0]) F

R RStudio FS[0] F

JavaScript Google Earth Engine print(FS.slice(0,1)) F

3. Index the variable FS to get the letter s

B. Slice a variable
Simply, a slice is part of a variable. We take a slice by using the general syntax variable[start:stop]
taking a slice of a variable or indexing a variable does not change the variable, rather it references
the elements of the variable. Note:

1. Slice the variable FS to the word “Forest”

Language Environment Enter Output

Python IDLE or ArcPro print(FS[0:6]) Forest

R RStudio FS[0:6] Forest

JavaScript Google Earth Engine print(FS.slice(0,6)) Forest

Notice we had to use the index 6 to stop, not 5. That is because the start is inclusive and the
stop is exclusive of the character.

 Geospatial Technology and Applications Center | EXERCISE 3 | 5

GTAC | Exercise 3 | September 2021

2. Slice the variable FS to the word “service”, you must figure out the start and stop index

Language Environment Enter Output

Python IDLE or ArcPro print(FS[start:stop]) service

R RStudio FS[start:stop] service

JavaScript Google Earth Engine print(FS.slice(start,stop)) service

3. You can also index lists and other variable types. Create the variable Region and have it equal
to [1,2,3,4,5,6,8,9] now index the variable to the region you are located in.

4. What would be the output of the following slice? Write it down then test the code to find
out!

Language Environment Enter Expected Output

Python IDLE or ArcPro tree = ‘spruce’

print(tree[1:3])

R RStudio tree <- ‘spruce’

tree[1:3]

JavaScript Google Earth
Engine

var tree = ee.String(‘tree’);

print(FS.slice(start,stop))

 Geospatial Technology and Applications Center | EXERCISE 3 | 6

GTAC | Exercise 3 | September 2021

Part 2: Conditional Statements
Within a conditional statement are some lines of code that will only be executed if the condition you
supply is met.

A. If statements
An if statement is the simplest conditional statement. The programmer will supply a condition that
can be either true or false, often referred to as a Boolean. If the condition is met (condition = TRUE),
then the code within the if statement is executed. Otherwise, nothing happens. This is visualized
below:

1. Begin by creating several variables. Create x and set it equal to 5 and create y and set it equal
to 7 using the syntax you learned in the previous exercise. If you need to, refer to the tables in
exercise 2 for syntax.

2. Now begin to build a simple if statement. We’re going to give the condition: x is less than y. If
the condition is true, y will be divided by 2. As always, syntax will differ across languages. To
see the differences, refer to the table below.

 Geospatial Technology and Applications Center | EXERCISE 3 | 7

GTAC | Exercise 3 | September 2021

Language Environment Enter

Python IDLE or ArcPy if x<y:

y=y/2

R RStudio if (x<y) {

y=y/2

}

JavaScript Google Earth Engine y = ee.Algorithms.If(x.gt(y), y = y.divide(2), y =
ee.Number(3));

3. Because x is less than y (the condition is true), the if statement will be executed. To confirm
that the y variable has been manipulated, add a print statement for the variable y.

4. After typing in the if statement and print statement, Run the script.
i. Python: Click Run, then Run Module
ii. R: Highlight the entire script and Type Ctrl+Enter or Ctrl+R
iii. JavaScript: Click Run in the Code Editor

Language Environment Enter Outputs

Python 2 IDLE print(y) 3

Python 3 ArcPy print(y) 3.5

R RStudio y [1] 3.5

JavaScript Google Earth Engine print(y) 3.5

Note: The output from Python is 3, rather than 3.5. Remember from exercise 2 that there are different
types of numbers. In Python the variable y was set to 7, an integer, so math done on that variable is
going to output an integer, and 3.5 is not an integer. To output 3.5 in python, the variable will need to be
a floating point. If you set y equal to 7.0 in python and run the script again, it would have output 3.5

5. To demonstrate the if statement working, change the variable y to 3. Run the script. The
variable y will not have changed. This is because the condition (x<y) is no longer true, and
therefore the if statement is not executed.

If statements can be very helpful in geospatial scripting to specify what you want the computer to
do, and when. In exercise 1 you saw an example of an if statement making an elevation mask. Think
of some other instances where having a conditional statement might be useful when writing a
geospatial program.

B. If Else Statements
If statements are the simplest conditional statements. They execute code if a condition is true and
do nothing if a condition is false. If else statements add an additional piece of code so that if a
condition is true, some code will be executed, and if a condition is false, some other code will be
executed. This can be visualized in the flowchart in figure 2.

 Geospatial Technology and Applications Center | EXERCISE 3 | 8

GTAC | Exercise 3 | September 2021

1. To learn the structure of an if else statement you’re going to begin by writing a simple one. In
your script, set your variable x equal to 5 and y equal to 7.

2. The structure of an if else statement is very similar to a simple if statement, and the first part
is identical. Set the “if” condition as x<y, just like in part A, and set the true code to y=y/2.

3. Now you need to add in the “else” code. The "else" code will be executed if x<y is false. In this
example, the else code is going to be x=x*2. The syntax for else will be the same as for if, but
it will still vary across languages. For a complete if else statement, see the table below.

Language Environment Enter

Python IDLE or ArcPro if x<y:
 y=y/2
else:
 x=x*2

R RStudio if (x<y) {
 y=y/2
}else{
 x=x*2
}

JavaScript Google Earth Engine var z = ee.Algorithms.If(x.gt(y), y.divide(2), x.multiply(2));
print(z)

4. Because x is less than y, the if statement will be executed. To confirm that the y variable has
been manipulated, issue a print statement for the variable y by entering print(y). Then, Run
the Script. Again, the computer should output the same results as it did in part A number 3,
because x was less than y.

 Geospatial Technology and Applications Center | EXERCISE 3 | 9

GTAC | Exercise 3 | September 2021

Note: In JavaScript, print the variable z instead of x or y. The variable z will take the value of either
y.divide(2) or x.multiply(2), depending on the evaluation of the conditional x.gt(y). Just like before, this is
necessary because of the way that Earth Engine objects are computed.

5. Now just as you did with the if statement in part A, change the variable y to 3, then re-enter
the if else statement and run it again. Now, because x is no longer less than y, y will not be
manipulated. Instead, the else code will be executed and x will be multiplied by 2.

These are simple examples, intended to show the structure of if and if else statements. A conditional
statement that you write into a script will have the exact same structure, but you will create it to
perform some geoprocessing task.

Part 3: Objects and Methods
Python, R, and JavaScript are languages that use objects. An object represents a collection of data which
has specific properties and characteristics.

Methods are functions that are specific to objects.

Objects and methods can be quite confusing for a while so don’t worry if you don’t fully understand
them.

A. Objects
1. Begin to understand objects is by examining a list or an array. Create the variable x and set it

equal to the list [12,7,99]. If you need to remember the syntax of the language that you’re
using, see Exercise 2 Part 1. Remember to use ee.List if you're using JavaScript.

2. Now think about ways that you can describe this variable. It has a length, min and max values,
and an order. These are some of the object properties. The object has methods that can be
used to examine or process the object.

B. Methods
You now have a List object. Let’s learn a few methods that you can use to pull information out of the
object. The syntax of a method involves “calling” the method, then “passing” it arguments.

1. One property of a list object is length. To get the length use the length method, len(). Print
the len() method to output the length

Language Environment Enter Outputs

Python IDLE or ArcPro print(len(x)) 3

R RStudio length(x) [1] 3

JavaScript Google Earth Engine print(x.length()); 3

This is an example of how methods can be used to get properties of an object. All methods
follow the same basic structure: calling the method, then passing in the necessary arguments.

 Geospatial Technology and Applications Center | EXERCISE 3 | 10

GTAC | Exercise 3 | September 2021

Note: If you’re doing this exercise in Python 2, the method you’re about to write uses the Python
Module “Math”.

What is a Module? A module is a code library. Many scripting languages such as Python and R support
code libraries, where programmers can develop and share commonly used pieces of code as a special
script or library file that can be referenced and loaded into the main program. These code libraries,
called modules in python, extend the functionality of Python. These extra pieces of code in the modules
are not available unless you specifically import the module. Similarly, R has code libraries called
packages, rather than modules. JavaScript uses code libraries as well, but its math methods don’t
require additional modules to be imported. For more information on modules and packages, see the
resources section below or the glossary

If you are working through this exercise in Python 2, you must type:

import math

in your script before you use math methods (best practice is to begin your script importing all the
modules you will need, so type import math on the very first line of your script).

2. To find the maximum value of list x use the maximum method. Call max() and input list x as
your argument. Print the method and run the script to see the output

Language Environment Enter Outputs

Python IDLE or ArcPro print(max(x)) 99

R RStudio max(x) [1] 99

JavaScript Google Earth Engine print(x.sort().get(-
1));

99

3. What if we wanted to order the list from smallest value to the largest value? We can use the
sort method to order our list! We will save our ordered list to a new variable y

Language Environment Enter

Python IDLE or ArcPro y = sorted(x)

R RStudio y <- sort(x)

JavaScript Google Earth Engine var y = x.sort();

Print out variable y to see the ordered list. Suppose you had a set of remotely sensed imagery,
or a table of field data that you needed to set in order by the date. The sort method may prove
very useful.

 Geospatial Technology and Applications Center | EXERCISE 3 | 11

GTAC | Exercise 3 | September 2021

4. Explore a variation of the sort method, sorting in reverse order. The sort method has an
argument “reverse” that is by default equal to “false”, if we change that to “true” we will have
a list in revered order.

Language Environment Enter

Python IDLE or ArcPro y = sorted(y, reverse = True)

R RStudio y <- sort(y, decreasing = TRUE)

JavaScript Google Earth Engine var y = ee.List(y).sort().reverse();

There are scores of useful methods that you can use in a script, but keep in mind they are specific to
each object. Some useful methods are outlined in the glossary!

Much like words in a natural language, you will continue learning new, useful methods the more you
program. Similarly, just like words in a natural language, some methods are more common and will
become very familiar to you, others you may not learn until you need it for a specific purpose. It is
more important to know where to look for new methods, than trying to memorize them all.

Part 4: Functions
Functions allow you to recall the same piece of code multiple times. Functions are ideal for repetitive
tasks. Functions will make script maintenance easier if at any point you need to modify or update your
script.

Up to this point, all the code that we have used has executed sequentially. That is, the computer reads
through the code line by line and executes it as it goes along. Think of code that executes sequentially
like a novel. You begin at page 1 and always read through line by line until the end of the book.
Functions, however, can be thought of like an entry in an encyclopedia. If you needed to look up an
entry, it would be extremely inefficient to read through the entire encyclopedia line by line until you
reached the entry, you’re interested in. Instead, you just skip straight to the entry that you need.
Similarly, a function is like a single entry. It stores all the information that you need, and can be looked
up, or “called”, only when it must be used.

A. Writing a Function
We are going to calculate the area of a circle. Suppose you have a list of crop circle radii and need to
calculate the total area of crop. This is a relatively simple equation so you could write it in each time,
but why do the extra work if you don’t need to?

 Geospatial Technology and Applications Center | EXERCISE 3 | 12

GTAC | Exercise 3 | September 2021

1. Create the variable radius and set it equal to 9.

Language Environment Assign Variable Value

Python IDLE or ArcPro radius=9

R RStudio radius=9 or radius <-
9

JavaScript Google Earth Engine var radius =
ee.Number(9);

Note: Before you move on writing your function, you must understand variable scope. Variables can
exist in a global, and local scope. To this point, all the variables you have created are global variables.
They exist “globally”, meaning that no matter where you use them in your script, they exist, they can be
used, and they can be changed. By contrast, a local variable does not exist everywhere in the script,
rather they exist only inside of a function. In several steps you will create a local variable A. This means
that outside the function, you will not be able to use or manipulate A. If you try to print(A), you will get
an error.

2. The basic structure of the function is below on the left, with our example of a circle area on
the right:

<function name><arguments> circleArea(radius)
<body> area = pi*radius2
<return> return(area)

The first line of the function must include the function name and the arguments (arguments
are things that you must give to the function each time you run it). Name this function
circleArea and make its arguments r

Language Environment Enter

Python IDLE or ArcPro def circleArea(r):

R RStudio circleArea <- function(r){

JavaScript Google Earth Engine function circleArea(r){

Note: In python, the first line of the function ends with a colon (:). In R and JavaScript the first line ends
with an opening bracket ({). These brackets are supposed to enclose the function. When you go to a new
line, RStudio and Google Earth Engine will probably add a closing bracket (}) for you. If they don’t, make
sure to add one yourself, otherwise the function will not work.

 Geospatial Technology and Applications Center | EXERCISE 3 | 13

GTAC | Exercise 3 | September 2021

3. On the second line of the function create a new variable, A, and set it equal to the equation
for the area of a circle (A=πr2). These languages already know that pi=3.14159265… so you
can simply type pi Look below for the syntax to create an exponent

Language Environment Enter

Python IDLE or ArcPro A = math.pi*r**2

R RStudio A <- pi*r**2

JavaScript Google Earth Engine var A = ee.Number(Math.PI).multiply(r.pow(2));

4. The last thing we need to include is a return. A return is what the function will give back when
we call it in the script, in this case we want the function to give us the area of a circle, A

Language Environment Complete Function

Python IDLE or ArcPro def circleArea(r):

A = math.pi*r**2

return A

R RStudio circleArea <- function(r){

 A <- pi*r**2

 return(A)

}

JavaScript Google Earth Engine function circleArea(r){

var A =
ee.Number(Math.PI).multiply(r.pow(2));

return(A)

}

5. Let’s use our function! Create variable area and set it equal to your function name, with the
argument, radius

Language Environment Enter

Python IDLE or ArcPro area = circleArea(radius)

R RStudio area <- circleArea(radius)

JavaScript Google Earth Engine var area = circleArea(radius);

Print the variable area. It will print the area of a circle with a radius of 9. Run the script

6. Recall from the earlier note the difference between global and local variables. area is a global
variable. It exists in a wide scope, which means it can be manipulated outside the circle
function, and we can print its value. The variable A that you created in the function is a local
variable. It exists only inside the function, but nowhere else. Try printing A then running the
script, what happens?

Functions should not be written sequentially in a script. It is best practice to write all the functions
you need at the beginning of the script, then use them as you need them in the body of the script.
After they’re written, you won’t ever need to write them again. This makes it easy to use equations
many times, especially if the equation is a complicated one. It also means that once you’ve correctly

 Geospatial Technology and Applications Center | EXERCISE 3 | 14

GTAC | Exercise 3 | September 2021

programmed the code in a function, there isn’t any chance that you’ll accidentally write it
incorrectly later in the script.

Part 5: Additional Resources
A. Conditional Statements

1. Python: If Else Statements
2. R

i. How to use Statements in R
ii. If Else Statements in R

3. Google Earth Engine: Conditionals in Google Earth Engine

B. Objects
1. Python: Classes and Objects in Python
2. R: Objects in R
3. JavaScript: GEE Objects and Methods Overview

C. Methods
1. Python: Python Methods, Functions, and Libraries
2. R: R Object System
3. JavaScript: Methods for Image Objects

D. Functions
1. Python: Software Carpentry Writing Functions
2. R: Software Carpentry Writing Functions in R
3. JavaScript: Functions and Mapping

Congratulations! You have completed this exercise. You have learned many of the skills
necessary for writing your own script.

Google Earth Engine: Exercise 4

Python 2 with ArcGIS: Exercise 5

R : Exercise 6

Python 3 with ArcPro: Exercise 7

