

 Geospatial Technology and Applications Center | EXERCISE 4 | 1

GTAC | Exercise 4 | September 2021

EXERCISE 4
Google Earth Engine

Introduction
This exercise quickly introduces tools available in Google Earth Engine (GEE). It is designed to allow you
to apply many of the concepts you learned in the earlier exercises and see how to use them in a
geospatial programming environment.

Objectives
 Apply and expand on the knowledge you learned in exercises 1-3
 Learn more about Google Earth Engine (GEE)
 Differentiate an Image and an Image Collection

Prerequisites
 Active Google Earth Engine (GEE) Account
 Completed Exercises 1-3 in Intro to Geospatial Scripting

 Geospatial Technology and Applications Center | EXERCISE 4 | 2

GTAC | Exercise 4 | September 2021

USDA Non-Discrimination Statement
In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the
USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited
from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual
orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political
beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all
bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print,
audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600
(voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may
be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online
at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in
the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit
your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil
Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email:
program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

 Geospatial Technology and Applications Center | EXERCISE 4 | 3

GTAC | Exercise 4 | September 2021

Table of Contents

Part 1: Setting up your Script ... 4

Part 2: Image Collections ... 4

Part 3: Reducers and Operators .. 7

Part 4: Creating a Function .. 9

Part 5: Optional: Visualizing Information .. 13

Part 6: Notes and Other Resources ... 14

 Geospatial Technology and Applications Center | EXERCISE 4 | 4

GTAC | Exercise 4 | September 2021

Part 1: Setting up your Script
You learned in earlier exercises about how to place comments in a script and about the importance of
writing a header into your script. This section of the exercise will walk you through that process.

A. Creating a Header and Save the Script
1. Add comments with your name, the date, and a description of the script. Remember typing //

will comment out a line in GEE. Your script should now look like the screenshot:

2. Save the script and name it “Intro_to_Geospatial_Scripting_Ex4”. You should now see the

script in your private repository on the left side of the Code Editor. You can find an example of
this code on the course repository.

Note: All the tools used in this exercise are described in the Docs tab in the left pane in the Earth Engine
Code Editor. Refer to the Docs tab for a description of the tools you're using. Use this tab to make sure
you're using Earth Engine tools correctly.

Part 2: Image Collections
A. The Earth Engine Data Catalog
The data catalog is where you can find information about all the imagery in Earth Engine. If you’re
ever unsure if there is data that you need in Earth Engine, the data catalog is where you will search
for it. Today you will be working with imagery from Landsat.

1. To the right of the search bar hover over the down arrow and select View Data Catalog

2. Scroll down and select Explore Landsat Imagery
3. Read about the different collections, we want to use Collection 2 Surface Reflectance Data.

Click on Landsat 8 Surface Reflectance scroll down and read the Description and Bands

 Geospatial Technology and Applications Center | EXERCISE 4 | 5

GTAC | Exercise 4 | September 2021

4. Scroll down to Explore in Earth Engine and look at the code. Copy from the first line down to
the line that starts with dataset. Paste the code into your GEE script

5. The variable name dataset is not very descriptive, rename the dataset variable to Landsat8

B. Filter GEE Image Collections
In GEE raster data is stored as either an Image or an Image Collection. Image objects have one or more
spectral bands. An image collection is a group of image objects. A common mistake is trying to use
Image object methods on an Image Collection.

1. Print the Landsat8 variable to learn more about it. Click Run or cntl+Enter. In the Console
pane on the right, you will see an image collection line appear with a processing symbol next
to it. GEE will take a while to run then you will get an error, telling you that it has accumulated
over 5000 elements. GEE is trying to give you information about all Landsat 8 images covering
the entire world. To fix this error we need to filter the image collection.

2. Filter an image collection by location

i. Create a variable to define our area of interest (AOI) before the Landsat8 variable
var AOI

ii. Set this variable equal to a Geometry point using ee.Geometry.Point()
var AOI = ee.Geometry.Point()

iii. Add in the longitude and latitude coordinates: -112,40.7 which is in Salt Lake City, Utah,
where GTAC is located.
var AOI = ee.Geometry.Point(-112,40.7)

3. Filter the Landsat8 variable by location by using .filterBounds()

 var Landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
 .filterDate('2021-05-01', '2021-06-01')

.filterBounds(AOI);
Now your image collection only contains Landsat8 images between the dates defined in

.filterDates() and imagery that contains the AOI point by .filterBounds()

4. Click run again. Now GEE will only print images that intersect with the point that you’ve
filtered by. It won’t add them to the map, but in the console on the right, you can see
information about the image collection.

 Geospatial Technology and Applications Center | EXERCISE 4 | 6

GTAC | Exercise 4 | September 2021

C. Adding a Layer to the Map
Printing a variable simply displays metadata about the object in the console. While this is invaluable
information, you will also need to display the images visually.

1. Use the Map.addLayer() command to add the imagery to the map
Map.addLayer()

2. We must tell the computer which variable we want to add to the map - Landsat8
Map.addLayer(Landsat8);

Drag the map using your mouse and use the scroll wheel to center your map over Northern
Utah then Run the script

3. GEE may take a few moments to run, but it will display an image in your map. You can use the
"Layers" tool in the upper right corner of the map window to turn the layer on and off. Your
code should now look like this:

 Geospatial Technology and Applications Center | EXERCISE 4 | 7

GTAC | Exercise 4 | September 2021

4. The image looks really dark so we need to tell GEE how to display the image. Go back to the
Landsat 8 page in the GEE Data Catalog. Scroll down to the code section and copy the
visualization variable and past it into your script above the Map.addLayer()

The bands display the band in red, green, and blue. The min and max scale the colors

5. Add the visualization to the Map.addLayer() so the Landsat image displays in true color
Map.addLayer(Landsat8,visualization,”True color”);

 The last argument in the code “True color” is the name of the layer as it appears on the map

Part 3: Reducers and Operators
A. Creating a Composite Image
In this section, you will use an image collection method to reduce the image collection into a single
composite image. In this exercise you are going to take the median value from the image collection.
For more information on this reducer and other reducers, see the Reducer Overview

1. You are going to use the .median() method to reduce the image collection. Create a new
variable called medianImg and set it equal to median of the Landsat8 image collection

var medianImg = Landsat8.median();

2. Print the median image and run the script. medianImg is now an Image where Landsat8 is an
Image Collection, you can see this displayed in the right console
print(medianImg);

Explore the metadata of the image by clicking the dropdown menu on the image in the
console, then clicking the bands dropdown. Notice the bands are named “B1”, “B2”, “B3”, etc.

3. Now add the median image to the map, the same way you added the image collection to the
map, except name the layer “Median Image”
Map.addLayer(medianImg,visualization,“Median Image”);

 Geospatial Technology and Applications Center | EXERCISE 4 | 8

GTAC | Exercise 4 | September 2021

B. Operators in Earth Engine
We’re going to use operators to do some band math on an image using is the median image you
created in the last section. We will use these operators to create a Normalized Difference
Vegetation Index (NDVI). Read more about NDVI

1. We will set the the NDVI variable equal to the NDVI equation

𝑛𝑑𝑣𝑖 =
𝑁𝐼𝑅 − 𝑟𝑒𝑑

𝑁𝐼𝑅 + 𝑟𝑒𝑑

Landsat 8 images have 7 image bands, each of which represents reflectance in a specific region
of the electromagnetic spectrum. In Landsat 8 Band 5 represents reflectance in the near-
infrared (NIR), and Band 4 represents red

4. Start with the top of the equation, the numerator. We need to get Band 4 and Band 5 out of
the median image. If you look at the printed image bands are named “B1”, “B2”, “B3”, etc. To
pull out an individual band use .select() method. The code below selects Band 4
medianImg.select('B4')

The numerator of the NDVI equation should be expressed as:
medianImg.select('B4').subtract(medianImg.select('B3'))

Now with all this information, can you script the entire NDVI equation? You can set the
numerator as a variable, then the denominator and then create an NDVI equation that divides
the numerator by the denominator.

5. The operators will do math on each pixel per band. Below is the calculations for NDVI in one
statement:
var ndvi = (medianImg.select('B4').subtract(medianImg.select('B3')))

 .divide((medianImg.select('B4')).add(medianImg.select('B3')));

These operators (.add(), .subtract(), .divide(), and .multiply()) are Earth Engine specific
6. Now add this image to the map, just as you have done with previous images
Map.addLayer(ndvi);

Your code should look like the screenshot below.

 Geospatial Technology and Applications Center | EXERCISE 4 | 9

GTAC | Exercise 4 | September 2021

6. When writing a script, there is usually more than one way to do something. Creating an NDVI
layer this way is a good way to learn and practice using Earth Engine operators. But there are
several other, cleaner ways, of calculating an NDVI image. Instead of entering a long equation,
Google Earth Engine has a .normalizedDifference() method to calculate NDVI:

var ndvi = medianImg.normalizedDifference(['B4','B3']);

This method takes an image (in this case, the image you named medianImg) and performs a
normalized difference on a list of 2 bands that you pass it (in this case the list holds the bands
4 and 3). This shows that, like many things in programming, there is not a single correct way
of getting something done. But learning more vocabulary of the language will likely help you
save time.

At this point, your code should look like the screenshot below:

Part 4: Creating a Function
This section will give you an opportunity to practice writing a function. A function allows you to wrap up
long pieces of code so they can be used again later. Then you can use them multiple times in a script,
the same way you use a method.

A. Setting Up a Function
1. In this piece of the exercise you will create a function called cloudMask. The arguments you

need to pass this function is just an image to create the cloud mask for. The correct syntax for
this function is:
function cloudMask (image){
}

Note: Recall from exercise 3 that a JavaScript function must start and end with curly brackets. In GEE the
code editor should automatically add an ending bracket when you type a beginning bracket. But if it
doesn’t, be sure to add it yourself.

 Geospatial Technology and Applications Center | EXERCISE 4 | 10

GTAC | Exercise 4 | September 2021

2. What you have now is a complete function. But right now there is no code within the function
to run, and remember that the function will not run anyways, unless we explicitly call it.
Before we call it, let's fill it in with some code.

B. Writing the Body of the Function
The cloud masking function you're writing in this section contains a series of complicated steps.
Don’t worry if you don't completely understand every line of code. The purpose of this section is
more to understand how to set up a function in a script. If you are interested in more training on the
Earth Engine code in this section, see Part 6: Notes and Other Resources. The following steps guide
you through writing the body of the cloudMask function.

1. Begin by specifying a cloud likelihood threshold. On the line after the first curly brace of your
function, write the code:
//Specify the cloud likelihood threshold -

 var cloud_thresh = 40;
Hit Enter

2. On the next line, use a pre-defined Earth Engine Algorithm to add a cloud likelihood band to
the image you passed to the function:
//use add the cloud likelihood band to the image

 var CloudScore = ee.Algorithms.Landsat.simpleCloudScore(image);
Hit Enter

3. On the next line, select the cloud likelihood band, called "cloud" by default. Use the .select()
method you just learned shown in the following code:
// isolate the cloud likelihood band
var quality = CloudScore.select('cloud');

Hit Enter
4. On the next line, create a variable that gets the pixels greater than the cloud threshold you

set in step 1, using the following code:
// get pixels above the threshold
var cloud01 = quality.gt(cloud_thresh);

Hit Enter
5. On the next line, use the .mask() method and an image logical operator methods to create a

mask using the pixels from the cloud01 variable you created in the last step. Use the following
code:
// create a mask from high likelihood pixels
var cloudmask = image.mask().and(cloud01.not());

Hit Enter
6. On the last line of the function, have the function return the image that it was passed, with

the newly identified cloudy pixels masked, using the following code:
// mask those pixels from the image
return image.mask(cloudmask);

Hit Enter

 Geospatial Technology and Applications Center | EXERCISE 4 | 11

GTAC | Exercise 4 | September 2021

The function that you have just written can be given a Landsat image in Earth Engine and mask out
cloudy pixels that it identifies in the image so they they're not used in your analysis. At the end of
step 6, your function should look like Figure 4.

Figure 1: A screenshot of the function written in section B

Again, don't worry if you don't completely understand every line of this function. What is more
important in this exercise is that you understand the structure of the function, and could replicate it
in a script you write on your own.

C. Using the Function
When we call the function, we will need to pass an argument (in this case, an image) to tell it which
image to mask clouds from. Our cloudy images, however, are in the TOAcollection, which is an
image collection, not a single image. Try pulling out a cloudy image from the collection using the
steps below.

1. On a new line below your function, Create a new variable called maskedImage.
2. You want the masked image equal to the output of an image from the cloudMask function. So

set the variable equal to cloudMask().
3. In the parentheses of cloudMask you need to pass an image argument. Begin by using

ee.Image. So far your line of code should read:
var maskedImage = cloudMask(ee.Image())
4. In the ee.Image parentheses you're going to pull an image out of TOAcollection by first

sorting the collection by cloud cover. Use the .sort() method to sort by the property
CLOUD_COVER.

var maskedImage =
cloudMask(ee.Image(TOAcollection.sort('CLOUD_COVER')))

Notice that the property you're sorting by needs to be a string.

5. Now the TOAcollection is sorted by cloud cover. To pull a single image out, use the .first()
method. This method needs no arguments.

var maskedImage =
cloudMask(ee.Image(TOAcollection.sort('CLOUD_COVER').first()));
6. Now the maskedImage variable is set to the output of a single image from the TOAcollection

that has been run through the cloudMask function. To visualize the image, add it your map

 Geospatial Technology and Applications Center | EXERCISE 4 | 12

GTAC | Exercise 4 | September 2021

using the Map.addLayer() command that you used in the previous section. Your code will look
like the image below:

Figure 2: A screenshot of your script at this stage of the exercise, including the cloudMask function and a masked
image

7. Click Run. You should now have 4 layers in your map. Notice the image that is added to the
map is a Landsat image, but the clouds have been removed from the image.

D. Optional: Mapping the Function Over a Collection
When you call your custom cloudMask function, you will need to pass an image argument, like you
did in section C. But what if you want to mask the cloudy images from the entire TOAcollection,
which contains many images? Outside of Earth Engine, you could use a loop to run the function on
each image in the collection individually. In Earth Engine, loops are frowned upon, because they
cannot be run on Earth Engine servers, which is what makes Earth Engine such a powerful
processing software. Instead you should use the .map() method.

1. On a line below the function Create a new variable called maskedCollection. Set
maskedCollection equal to TOAcollection, but don't add a semicolon to the end of the line
yet.

2. After collection, add the .map() method. .map() is intended to take an algorithm, like the
function you wrote in section B, and apply it to every image in the collection. Because of this,

 Geospatial Technology and Applications Center | EXERCISE 4 | 13

GTAC | Exercise 4 | September 2021

the only argument you'll need to pass to .map() is the cloudMask function. The full syntax for
this line is:
var maskedCollection = TOAcollection.map(cloudMask);

3. Now you've created a new variable called maskedCollection, which is the same as the Landsat
image collection, but with cloudy pixels masked out.

4. To see the masked layer, add it to the map, using:
Map.addLayer(maskedCollection)
Your code should look like the image below.

5. Click Run. You should have 5 layers now in your map.

Part 5: Optional: Visualizing Information
A. Creating a Chart
You are going to create a histogram of the pixel values in your NDVI image in the Earth Engine Code
Editor. To do this you need to have a vector boundary (a polygon) for which area to chart. This is the
area argument that the function needs. In this piece of the exercise, you will create a polygon
around the filtered collection layer, then generate a histogram of NDVI values.

 Geospatial Technology and Applications Center | EXERCISE 4 | 14

GTAC | Exercise 4 | September 2021

1. Create a new variable called boundary, pull the first image out of your image collection using
the .first() method, and take the geometry of that image.
var boundary = TOAcollection.first().geometry();

2. Now you can use an Earth Engine chart function (ui.Chart). You will need to wrap the chart
function in a print statement to display the chart on the console, and you are going to set the
ui.Chart to a histogram of an image that we pass to the function. Try using the NDVI image
you created. Add the statement below to your function.

print(ui.Chart.image.histogram(ndvi,boundary,500));

3. Click Run. You should see a chart like the one below output in your console pane. It is a

histogram of your NDVI image values.

You can find an example of this completed script on the course repository, GeospatialScripting_ex4.

Part 6: Notes and Other Resources
Earth Engine has several very useful resources that you will find yourself referring to often as you
become an avid Earth Engine user.

A. Notes and Resources
1. GTAC offers an Earth Engine Code Editor specific training. The training is similar to the

exercise you just completed, but goes into significantly more detail about the software. It is
more focused on the contents of the script that you write, rather than the structure of your
code. To find the tutorial, visit:
http://fsweb.geotraining.fs.fed.us/www/index.php?lessons_ID=3448

2. Google offers several tutorials

 Geospatial Technology and Applications Center | EXERCISE 4 | 15

GTAC | Exercise 4 | September 2021

3. In addition to offering the tutorials, there is an online forum specific to Earth Engine. The
developers of the software are present on the forum, as well as a very active user community.
Sifting through old posts may often yield a solution to your problem. If you’re still stumped,
this is the perfect place to ask a question anywhere from beginner to advanced.
https://groups.google.com/forum/#!forum/google-earth-engine-developers

4. In the code editor page itself there is some documentation explaining all the methods
available for working with the Earth Engine objects. In the panel on the left, the docs tab
contains a list of all the methods and their required arguments. If you can’t get a tool to work,
check what the docs tab has to say about it. You may be missing a key piece of information.

Congratulations! You have learned some basic skills about geospatial scripting in Earth Engine.
This should have given you the chance to practice some of the skills you learned in earlier
exercises and given you some resources to continue learning. Remember that when scripting
you are learning a new language, and it will take time. Review this exercise and visit the
additional resources provided to keep practicing your new skills.

