

 Geospatial Technology and Applications Center | EXERCISE 7 | 1

GTAC | Exercise 7 | September 2021

EXERCISE 7
Geospatial Scripting in Python 3

Introduction
This exercise focuses on using Python 3 and Jupyter Notebook in ArcPro. This exercise is very fast paced
and builds on much of the information that you learned in exercises 1-3. It is designed to allow you to
apply many of the concepts you learned in the earlier exercises and see how to use them in a geospatial
scripting environment.

Objectives
 Learn more about Python and JupyterNotebook

Required Data
 Python Course data folder

 Geospatial Technology and Applications Center | EXERCISE 7 | 2

GTAC | Exercise 7 | September 2021

USDA Non-Discrimination Statement
In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the
USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited
from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual
orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political
beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all
bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print,
audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600
(voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may
be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online
at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in
the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit
your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil
Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email:
program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

 Geospatial Technology and Applications Center | EXERCISE 7 | 3

GTAC | Exercise 7 | September 2021

Table of Contents

Part 1: Exploring ArcPy and Preparing a Script .. 4

Part 2: Loops .. 7

Part 3: Functions and Raster Math .. 8

Part 4: Notes and Other Resources ... 13

 Geospatial Technology and Applications Center | EXERCISE 7 | 4

GTAC | Exercise 7 | September 2021

Part 1: Exploring ArcPy and Preparing a Script
In this exercise you will see how to type code directly into a Python window in ArcPro, which is an
interpreter like the Python shell. You will also prepare a standalone script in IDLE.

A. Create a Jupyter Notebook script
1. Open a Jupyter Notebook in ArcPro by going to Insert>New Notebook

It will automatically be named New Notebook

 Geospatial Technology and Applications Center | EXERCISE 7 | 5

GTAC | Exercise 7 | September 2021

Rename the notebook by navigating to the Catalog>
Folder>GeospatialScripting the notebook should be
saved in the project geodatabase right-click and select
Rename

Rename the notebook GeospatialScripting_Ex7

2. Set the workspace by replacing USERNAME with your username and setting the path as the
path to your saved course data

arcpy.env.workspace = r'C:\Users\USERNAME\Documents\GeospatialScripting\Course Data'

3. Check out the spatial analyst extension

arcpy.CheckOutExtension("spatial")

4. Add a comment to the top of the script that includes your name, the name of the exercise.
Then start to add comments to each line of the script to describe what it does.

5. Add the ListRasters command, start by typing arcpy.List notice in Jupyter Notebooks it

does not autocomplete, you must press the Tab button to see the autocomplete options

arcpy.ListRasters()

 Geospatial Technology and Applications Center | EXERCISE 7 | 6

GTAC | Exercise 7 | September 2021

 Run the script, it should look like the script below:

6. We only want the rasters that are .TIF rasters, we don’t want the .txt file, to do this we will
use the arguments to the .ListRasters() method:

arcpy.ListRasters(“*”,”TIF”)

7. Cast the list of rasters to the variable rasters

rasters = arcpy.ListRasters(“*”,”TIF”)

To run the code either press ctrl+ enter or hit the button at the top of the notebook to
run the script

8. Save the script using the Save button in the upper left-hand corner

When to use a Jupyter Notebook vs. the Python Window:

For the most part you should save your work and use Jupyter Notebooks, however when testing a bit of
code troubleshooting the Python Window is a great option.

 Geospatial Technology and Applications Center | EXERCISE 7 | 7

GTAC | Exercise 7 | September 2021

Part 2: Loops
What is a loop? A loop is a piece of code that will execute repeatedly until some condition is met.
Consider the following flowchart in figure 2:

You can see that this flowchart looks like conditional statements that you learned about in earlier
exercises. But in this case, the true condition runs some code, then returns the code to before the
condition to test it again, so it will run if the condition is true. There are several different kinds of loops,
their structures all differing slightly, here you're going to write a for loop.

A. For Loop
1. On the next line of your script, you’re going to write a "for loop". This loop is going to print

out each of the raster names in the raster list you created in the last section. The syntax of a
for loop is very similar to the syntax of an if statement:

for image in rasters:

 print(image)

Don’t forget a comment to explain what the code does! This means that the loop will cycle
through the list rasters. Remember that the variable rasters is a list of the rasters in your
workspace. For each item in the list (in this loop we're calling the each item "image") it will issue
a print statement. Try running the code:

 Geospatial Technology and Applications Center | EXERCISE 7 | 8

GTAC | Exercise 7 | September 2021

2. Let's try using another useful set of arcpy functions inside of this for loop. Delete the print
statement that you wrote in the first step of this section. Create a new variable called desc
and set it equal to arcpy.Describe(image) – This creates a geoprocessing describe object.

desc = arcpy.Describe(image)

3. On the next line Create a new variable called pixelSize and set it equal to
desc.meanCellHeight desc is an object, a collection of data, that holds information about the
rasters in our list. The method .meanCellHeight will extract the cell size (the spatial
resolution) of the raster.

pixelSize = desc.meanCellHeight

Be aware of the dot notation here. Now the dot is telling Python to look for the property
"meanCellHeight" in the object, desc

4. Now issue a new print statement. This print statement is going to take a slightly different
syntax than your previous print statements. See below:

print('The image '+str(image)+ 'has a resolution of ' +str(pixelSize) +' meters')

5. To see what these lines of code have done, click Run. Your script should look similar to the
example below:

Part 3: Functions and Raster Math
You learned about functions in exercise 3. Now you're going to get to create a useful function in your
code and see how to call it. This function is going to create a Normalized Difference Vegetation Index
(NDVI) image.

A. Setting up the Function
1. Recall to define a function you need to specify the name of the function, and the arguments

that must be passed to it. We're going to name this function runNDVI, and the arguments it
needs are a Near Infrared image and a Red image. Type the following code below the for loop:

def runNDVI(nir, red):

Like the for loop, everything that is indented after the colon is part of the function

B. Raster Math in the Body of the Function
1. On the first line in the function, you're going to calculate the numerator of the NDVI equation.

Create a local variable called ndviNum, for NDVI Numerator. Remember that all variables
created in the function will be local variables, which means they can't be used outside of the

 Geospatial Technology and Applications Center | EXERCISE 7 | 9

GTAC | Exercise 7 | September 2021

function they're created in. You'll want this variable to be a raster of floating-point values
equal to the nir image minus the red image. The syntax for doing to is below:

ndviNum = arcpy.sa.Float(nir-red)

2. On the second line of the function you want to calculate the denominator of the NDVI
equation. Create a local variable called ndviDenom. You'll want this to be an image of
floating-point values equal to the nir image plus the red image. The syntax for doing to is
below:

ndviDenom = arcpy.sa.Float(nir+red)

3. To create the vegetation index, just complete the NDVI equation. Create a new local variable
called outRaster and set it equal to the numerator over the denominator. See the syntax
below:

outRaster = ndviNum/ndviDenom

4. Now all you need to tell the function what to return when it's called later in the script. You
want the returned image to be the index variable. So, type return index. The complete
function should look like this:

5. At this point your script should look like this:

C. Calling the Function
The following steps will guide you through calling the function:

1. Create the arguments: Landsat_red and Landsat_nir
i. Create variable red. This is band 4 of the Landsat image you are working with, and all

these bands are listed in the "rasters" variable that you created earlier. To point the
computer towards this raster we will index the rasters variable

 Geospatial Technology and Applications Center | EXERCISE 7 | 10

GTAC | Exercise 7 | September 2021

Landsat_red = arcpy.sa.Raster(rasters[5])

print(Landsat_red)

ii. Create the variable nir This is band 5 of the Landsat image you are working with, and all
these bands are listed in the "rasters" variable that you created earlier. To point the
computer towards this raster we will index the rasters variable

Landsat_nir = arcpy.sa.Raster(rasters[6])

print(Landsat_nir)

2. The function runNDVI will calculate an NDVI image from a NIR and red image that you pass to
it. To call this function, create a new global variable called ndvi, and set it equal to the
function runNDVI. Remember that a global variable is any variable that is created outside of a
function and it can be used anywhere else in the script.

ndvi = runNDVI(

3. In the parentheses after the function you need to specify the arguments. Remember when
you defined this function in the last section you set the necessary arguments to a NIR image,
nir and a red image, red so the function will be expecting two images and it will use them in
that order. Your statement should look like this:

ndvi = runNDVI(Landsat_nir,Landsat_red)

4. Now the ndvi variable is equal to the output of the runNDVI function, when you pass it a Near
Infrared band and a red band.

D. Saving the Raster
1. Now that the vegetation index had been generated you need to save it to your computer so

you can access it later. The raster object has a save method that we can use to get the image
onto our machine. The argument passed to this method is an output path. Apply the save
method to the ndvi variable, and change the path with your path to your output:

2. Add another print statement after saving the raster to indicate that the script is finished

running. Print the string, 'done'

print('done')

This print statement will execute after the raster has finished saving, so when we run the
script it tell us when it is finished. Run and Save the Script

 Geospatial Technology and Applications Center | EXERCISE 7 | 11

GTAC | Exercise 7 | September 2021

3. The print statements supplying the resolution of the images should appear first. The ndvi will
take a moment to process. When the statement, 'done', appears in the shell, the script is
finished.

E. Viewing the Raster in ArcPro

1. Click on the tab and then in the top ribbon select the Map tab

2. Click the add data button.
3. In the add data window, navigate to where you saved the ndviOut raster.
4. Open the ndviOut.tif raster. ArcPro will display the NDVI raster that you generated using the

script that you just wrote. Values will be between -1 and 1, with higher values highlighting

 Geospatial Technology and Applications Center | EXERCISE 7 | 12

GTAC | Exercise 7 | September 2021

healthier vegetation. Click on the colorbar and change the color scheme to visualize the data

 Geospatial Technology and Applications Center | EXERCISE 7 | 13

GTAC | Exercise 7 | September 2021

Part 4: Notes and Other Resources
 ESRI provides significant documentation about arcpy syntax both in ArcMap and in online

documentation. A link to some online resources is here

 The internet will prove to be an invaluable resource. If you're having any trouble with a script,
chances are somebody else will have encountered an identical problem, found a solution, and
provided it online. Often these solutions can be found on GIS forums.

 Python is more than arcpy. The Python portion of this course focused on using ArcPy for
geospatial processing. But Python can be used for so much more than just the tools in the ArcPy
site package. There are many geospatial specific tools available to use. See this link for a sample
of a few: Python Data Science Handbook

Congratulations! You have learned some basic and very important skills about geospatial
scripting in Python. This should have given you the chance to practice some of the skills you
learned in earlier exercises and given you some resources to continue learning. Remember that
when scripting you are learning a new language, and it will take time. Review this exercise and
visit the additional resources provided to keep practicing your new skills.

