

 Geospatial Technology and Applications Center | EXERCISE 2 | 1

Last Updated: July 2017

EXERCISE 2

Concepts of Scripting, Part 1
Introduction
There are a number of powerful tools available for geospatial analysis that require some knowledge of

scripting, such as ArcPy, Google Earth Engine, and the R computing environment. These tools extend the

power and functionality of GIS and remote sensing. This exercise provides an introduction to scripting

concepts that aren’t specific to any programming language or geospatial tool but are necessary to

understand to begin writing code in any environment. The exercise is designed to let you work in

Python, R, or JavaScript. The numbered instructions provide information about what the commands you

enter will do, and the tables give examples about what code needs to be typed in your chosen language.

Objectives
 Become familiar with basic concepts of scripting

Required Software (Choose 1)
 RStudio

 Python v2.x

 Google Earth Engine Account

Prerequisites
 Introduction to Geospatial Scripting, Exercise 1: Planning a Script

 Geospatial Technology and Applications Center | EXERCISE 2 | 2

Table of Contents
Part 1: Variables, Statements .. 3

Part 2: Operators ... 7

Part 3: Additional Resources .. 10

 Geospatial Technology and Applications Center | EXERCISE 2 | 3

Part 1: Variables and Statements

Understanding variables and statements, and knowing how to correctly write them in a programming

language, is crucial to learning to use geospatial scripting tools. In this section you may choose between

3 scripting environments, RStudio, Google Earth Engine (GEE) Code Editor, or Python (IDLE). If you need

to install or access one of these environments, please refer to the Appendix.

Important: Notes on Syntax. Before you begin you must be aware of what syntax is in a scripting

language. Syntax is the format that programs must be written in. In a natural language you may think of

this as sentence structure or grammar. In a scripting language, it may include things like case sensitivity,

dot notation, rules for naming variables, and punctuation usage. Just as with natural languages, syntax

differs across scripting languages and you will notice these differences throughout all of the exercises in

this course. This exercise has many tables to demonstrate different syntax in 3 languages, so make sure

when you enter commands in your script that you're using the correct syntax for your chosen language.

A. Variables
A variable is a reference to a place in the computer’s memory, which can contain a value. Different

languages have different syntax for naming variables. For example, in JavaScript and R, variables

must begin with a letter. In Python they can also begin with an underscore, but none of these

languages will let the name of your variable begin with a number. The name, variable1, is acceptable

in all three languages, but the name, 1variable, will give an error.

Python, JavaScript, and R are all case sensitive languages. This means that upper and lowercase

matter when it comes to naming variables. The variables, "variable1", and, "Variable1", are not

considered the same.

1. Open IDLE, RStudio, or a Code Editor window. Save the script the same way you learned in
Exercise 1, part A. Name the saved file Intro_to_GeospatialScripting_ex2. In Python and R,
make sure to use the .py or .R extension.

2. To begin, we’re going to create the variable, x. In your scripting window create x, then assign
the variable x a value of 5. For syntax, see the table below.

Language Environment Assign Variable Value

Python IDLE x=5

R RStudio x=5 or x <- 5

JavaScript Google Earth Engine var x = ee.Number(5);

Note: Why does JavaScript use ee.Number? It’s because this exercise focuses on using JavaScript in Earth

Engine. If you were scripting in JavaScript outside of Earth Engine, you wouldn’t use ee.Number. Instead

you would just type in your variable's value and it would assume the number type. The “ee” stands for

Earth Engine and it means that this number is an Earth Engine object, which you will learn about in the

 Geospatial Technology and Applications Center | EXERCISE 2 | 4

next exercise. If you would like to read more about these objects now, see

https://developers.google.com/earth-engine/client_server.

Have you noticed differences in syntax yet? One example are Semicolons (;). These are used in

JavaScript to mark the end of statements. In Python and R statements are more commonly ended by

a line break (hitting Enter).

B. Statements
A statement is an instruction given to the machine. They are the smallest piece of a code that can

perform work on their own. In a natural language, like English, you must speak using a complete

sentence. In a scripting language, you need to write using complete statements. The line that you

just wrote, creating the variable x and assigning it a value of 5, is now a complete statement.

3. Run the Script.

i. To run the script in Python, Click Run, then Run Module, in the Python window. It will
prompt you to save the script first.

ii. To run the script in R, highlight the entire script, then click Run. You will see the code run
in the console at the bottom left.

iii. To run the script in the Earth Engine Code Editor, click Run.

You may not be able to tell that your computer has done anything, but the instruction to
create a variable and assign it a value has been issued.

4. To confirm the variable now exists, enter a print statement on the next line. A print statement
is an instruction sent to the computer that tells it to output information. Type a print
statement using the syntax in the table below, depending on the language you're using.

Language Environment Enter Outputs

Python IDLE print x 5

R RStudio x [1] 5

JavaScript Google Earth
Engine

print(x) 5

Your full script should now read:

https://developers.google.com/earth-engine/client_server

 Geospatial Technology and Applications Center | EXERCISE 2 | 5

Language Environment Full Script

Python IDLE x=5

print x

R RStudio x <- 5

x

JavaScript Google Earth
Engine

var x = ee.Number(5);

print(x)

Note: In R, you can type print (x), but there is no need. Simply typing x will cause the variable to be

printed.

5. Run the script. Notice the output (5) that is listed in the table above.

6. The two lines that you have typed so far are both examples of statements. Keep the variable x
for the next section.

C. Variable Types (Strings, Numbers, and Lists)
Variables don’t have to be numbers. Variables can take several other forms including strings and

lists, which you are going to learn about in this section. Each language has its own variable types

that differ slightly. In this exercise you will be learning about some common data types that exist in

Python, R, and JavaScript. As you begin to learn more of the specifics of a single language, you will

start become more familiar with its variable types. In this exercise you'll learn about some common

variable types that are used in all three languages.

1. String variables (often referred to as “Characters” in R) can hold text. To create a variable that
stores a string, enclose the variable’s value in quotes (“”). These variables can hold anything
inside the quotation marks including numbers, letters, and other characters. In your scripting
window, create a new variable, y, and set it equal to “five”.

Language Environment Enter

Python IDLE y="five"

R RStudio y<-"five"

JavaScript Google Earth Engine var y=ee.String("five");

2. The variable y is now equal to a string of characters, not the number 5. There is another
useful command we can give the computer to have it tell us what type of variable we have.
It’s called a type command. Put a type of command in a print statement. Type a print
statement to get the type of y, then run the script. Syntax will vary across languages, see
table below.

 Geospatial Technology and Applications Center | EXERCISE 2 | 6

Language Environment Enter Outputs

Python IDLE print(type(y)) <type ‘str’>

R RStudio typeof(y) [1] "character"

JavaScript Google Earth
Engine

print(typeof(y.getInfo())); string

Note: In Earth Engine, be wary of using the .getInfo command. It is used here to illustrate a data type.

But if used inappropriately, it can cause errors, especially on large collections of data. You can read more

about this here: https://developers.google.com/earth-engine/client_server

3. Notice how every environment gives a different output, but each output is telling us the same
thing. The variable y is a string (referred to as a character in RStudio).

4. Try giving the same command for the variable x. Type a print statement to get the type of x,
then run the script. Syntax will vary across languages, see table below.

Language Environment Enter Outputs

Python IDLE print(type(x)) <type ‘int’>

R RStudio (typeof(x)) [1] "double"

JavaScript Google Earth Engine print(typeof(x.getInfo())); number

This may be an unexpected result. JavaScript provided number, because we used the getInfo()

command to pull the object type out of the Earth Engine object. But what is an int? A double? These

are all examples of numeric data types. JavaScript provided number because all numbers in

JavaScript are 32-bit floating point numbers, so there is no reason to disambiguate what type of

number. A floating point number means that the decimal point in a number can “float”, and the bit

depth, 32, means that this is a higher precision number. Python is ‘int’ which is short for integer,

which are whole numbers. R provided “double”, which is also a floating point number. R also

supports integers, but its default storage type is double. For these exercises we won't elaborate

further on number types in these languages. If you would like to learn more about number types

please see the additional resources section or the glossary.

5. Let’s move on to lists. Lists are ordered collections of values, which are useful for many
geospatial processing applications that we will explore later on. Let’s begin by creating a list of
numbers. Create the variable num_list and set it equal to the list 9,4,7,1. See the table below
for syntax.

https://developers.google.com/earth-engine/client_server

 Geospatial Technology and Applications Center | EXERCISE 2 | 7

Language Environment Enter

Python IDLE num_list = [9,4,7,1]

R RStudio num_list = c(9,4,7,1)

JavaScript Google Earth Engine var num_list = ee.List([9,4,7,1]);

6. Add another print statement for num_list and Run the script. You'll see it output a list of
numbers.

7. Lists can hold more than just numeric values. They can hold many kinds of values. Create a list
called string_list using a list of strings. See the table below for syntax.

Language Environment Enter

Python IDLE string_list = ["scripting", "is", "fun"]

R RStudio string_list = c('scripting', 'is', 'fun')

JavaScript Google Earth Engine var string_list = ee.List(['scripting', 'is ', 'fun']);

8. Add another print statement for string_list and Run the script. You'll see it output the list you
just created.

9. Lists can also hold mixed value types. Create one more list called mix_list and fill it with the
values 5 and “five”. See the table below for Syntax

Language Environment Enter

Python IDLE mix_list = [5, "five"]

R RStudio mix_list = c(5, 'five')

JavaScript Google Earth Engine var mix_list = ee.List([5, 'five']);

10. Add another print statement for mix_list and Run the script. You'll see it output the list you
just created.

There are many other types of data: dictionaries, matrices, and Booleans to name a few. Not
every scripting language uses the same data types, and today we don’t have time to cover all of
them, or the differences in each language. As you go through the later exercises you may be
introduced to additional data types.

Part 2: Operators

Operators are commands that we can give to the computer in a scripting language. In this exercise you

will learn about arithmetic operators, relational operators, and logical operators.

A. Arithmetic Operators (+,-,*,/)
Arithmetic operators are tools used to perform some mathematical process on a variable. They can

be very useful in geospatial scripting.

 Geospatial Technology and Applications Center | EXERCISE 2 | 8

1. To see how operators work, begin by opening a new window, or if you still have your IDLE,
RStudio, or Code Editor window open, simply delete the code you've written so far.

2. Begin by setting up some variables. First create variable x, and set it equal to 5. Then create
variable y and set it equal to 7. Use ee.Number(5); in Earth Engine.

Language Environment Enter

Python IDLE x=5

y=7

R RStudio x<-5

y<-7

JavaScript Google Earth Engine var x = ee.Number(5);

var y = ee.Number(7);

3. Now we’re going to make a new variable and set it equal to the sum of x and y. Create the
variable z and set it equal to x+y.

Language Environment Enter

Python IDLE z = x+y

R RStudio z <- x+y

JavaScript Google Earth Engine var z = x.add(y);

4. Now add a print statement to print out the variable z, just like you did in part 1. Run the
script. You will see that z is now set to the sum of x and y.

Other arithmetic operators (-, *, and /) can be used in the exact same way. These can be used to
apply equations to your data.

B. Relational Operators (<, >, ==, !=)
Relational operators (also referred to as comparison operators) are used the same way as arithmetic

operators, but rather than perform some mathematical function they evaluate the relationship

between two variables. This can make it easy to evaluate whether the variables you’ve calculated

are less than or greater than one another. This can be useful when determining two variables

relationship to one another, for instance if one is greater than the other.

1. Keep the variables from part A that you already have created.

2. To see how simple relational operators are to use, start with a simple print statement. Tell the
computer to print x>y using appropriate syntax provided in the table below. Run the script.

 Geospatial Technology and Applications Center | EXERCISE 2 | 9

Language Environment Enter Outputs

Python IDLE print(x>y) False

R RStudio x>y [1] FALSE

JavaScript Google Earth Engine print(x.gt(y)) 0

3. The computer will print out false (or 0 in Earth Engine as opposed to 1, which would be true)
because this is a false relationship; x is not greater than y. Try one more. Give another print
statement. This time, test is x is not equal (!=) to z. Run the Script

Language Environment Enter Outputs

Python IDLE print(x!=z) True

R RStudio x!=z [1] TRUE

JavaScript Google Earth Engine print(x.neq(z)) 1

4. This time the computer prints true (or 1), because it is true that x is not equal to z. Z is still the
sum of x and y. Just as there are differences in syntax between the three languages, there are
differences in operators as well. To demonstrate this, let’s change the value of our variables.
Set x equal to the number 2 and set y equal to the string “2”.

Language Environment Enter

Python IDLE x=2

y="2"

R RStudio x<-2

y<-"2"

JavaScript Google Earth Engine var x = ee.Number(2);

var y = ee.String("2");

5. Now type a print statement for x=y. Run the script.

Language Environment Enter Outputs

Python IDLE print(x==y) False

R RStudio x==y [1] TRUE

JavaScript Google Earth Engine print(x==y); false

6. The three languages seem to disagree here. This is simply a difference in characteristics of the
operators in different languages. Python and JavaScript gives false because the variables are
not the same type. R returns true, because it recognizes the values are the same, though they
are not the same type.

C. Logical Operators (And, Or, and Not)
Logical operators exist to help us make logical decisions in a script. You will find that when writing

conditional statements (which you will learn about in the next exercise) that logical operators are

exceedingly useful when passing Boolean values and comparing variables.

 Geospatial Technology and Applications Center | EXERCISE 2 | 10

1. To begin lets set the string variable y back to a number. Set y equal to 7. Leave x as 2, and z as
the sum of x and y

2. Just as before, add a print statement. This time use the AND operator to test if x is less than y
AND z. Remember that AND is different from +, which is an arithmetic operator.

Language Environment Enter Outputs

Python IDLE print(x<(y and z)) True

R RStudio x<y&z [1] TRUE

JavaScript Google Earth Engine print(x.lt(y).and(z)); 1

3. The computer returns true because x is a number that is less than y AND is less than z. Had we
used the operator "not", the output would have been false. For an additional reference of
operators in all three languages, please see the glossary.

Part 3: Additional Resources

A. Variables and Variable Types
1. Python

i. http://www.tutorialspoint.com/python/python_variable_types.htm

2. R

i. http://www.tutorialspoint.com/r/r_data_types.htm

3. JavaScript

i. https://developers.google.com/earth-engine/tutorial_js_01#basic-javascript-data-types

B. Operators
1. Python

i. http://www.tutorialspoint.com/python/python_basic_operators.htm

2. R

i. http://www.tutorialspoint.com/r/r_operators.htm

3. JavaScript

i. https://developers.google.com/earth-engine/getstarted

ii. https://developers.google.com/earth-engine/image_math

iii. https://developers.google.com/earth-engine/image_relational

Congratulations: You have completed this exercise. You have now been introduced to some of
the basic concepts of scripting. In the next exercise you will build on this knowledge so that you
may become familiar with all of the necessary concepts for writing your own script in later
exercises.

http://www.tutorialspoint.com/python/python_variable_types.htm
http://www.tutorialspoint.com/r/r_data_types.htm
https://developers.google.com/earth-engine/tutorial_js_01#basic-javascript-data-types
http://www.tutorialspoint.com/python/python_basic_operators.htm
http://www.tutorialspoint.com/r/r_operators.htm
https://developers.google.com/earth-engine/getstarted
https://developers.google.com/earth-engine/image_math
https://developers.google.com/earth-engine/image_relational

