
 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     1 

Last Updated: July 2017  
Version: Python 2.7 

EXERCISE 5  

Geospatial Scripting in Python 

 

Introduction 
▪ This exercise focuses on using Python and ArcPy. This exercise is very fast paced, and builds on 

much of the information that you learned in exercises 1-3. It is designed to allow you to apply 
many of the concepts you learned in the earlier exercises and see how to use them in a 
geospatial scripting environment.  

Objectives 
▪ Apply and expand on the information that you learned in the exercises 1-3 

▪ Learn more about Python and ArcPy 

Required Software 
▪ Python version 2.x 

Required Data 
▪ Course data folder 

Prerequisites 
▪ Introduction to Geospatial Scripting Exercise 1: Planning a script. 

▪ Introduction to Geospatial Scripting Exercise 2: Concepts of Scripting, Part 1 

▪ Introduction to Geospatial Scripting Exercise 3: Concepts of Scripting, Part 2 

▪ Python installed 

  



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     2 

Table of Contents 
Part 1: Exploring ArcPy and Preparing a Script ................................................................................ 3 

Part 2: Loops .................................................................................................................................... 6 

Part 3: Functions and Raster Math .................................................................................................. 8 

Part 4: Notes and Other Resources ............................................................................................... 11 

 

  



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     3 

Part 1: Exploring ArcPy and Preparing a Script 

In this exercise you will see how to type code directly into a Python window in ArcMap, which is an 
interpreter like the Python shell. You will also prepare a standalone script in IDLE. 

A. Opening a Python Window in ArcMap 
1. Open ArcMap. 

2. In ArcMap, open a Python window. Click Geoprocessing, then click Python. Or Click the 
Python window icon on the toolbar. 

 
3. This opens a Python interpreter directly in in ArcMap. Each line you type into the interpreter 

is executed as you enter it into the window.  

i. One advantage of this is the help window on the right. As you type in commands Python 
will give you information about the commands that you’re using, such as which 
arguments you need to pass to a method.  

ii. A disadvantage is that you cannot save these scripts. But to quickly use ArcMap tools, this 
is a nice environment to be in. 

For this exercise, we will not be typing code into the ArcMap python window, instead we will be 

preparing a standalone script, later in the exercise. Keep ArcMap open for the next section. 

B. Finding Syntax of ArcMap Tools 
1. Open the Arc Toolbox. Click Geoprocessing, then ArcToolbox 

2. In the window that opens, Click the plus sign to expand the Analysis toolbox, then click the 
plus sign to expand the Extract toolset. 

3. Right Click the Clip tool. Click Item description. 

4. In the Item Description window that opens there is information about the clip tool.  

i. If you scroll down in the window you will see a section labeled Syntax, with the line: 

Clip_analysis (in_features, clip_features, out_feature_class, {cluster_tolerance}). 

Note: Let's break down what this instruction means piece by piece: 

Clip_analysis (in_features, clip_features, out_feature_class, {cluster_tolerance}) 

"Clip_analysis" is the name of the tool. The item description is telling you what clip analysis will do, and 

how to use it. 

Clip_analysis (in_features, clip_features, out_feature_class, {cluster_tolerance}) 

 Everything in the parentheses, but not in the brackets, are the arguments that must be passed to the 

tool. These arguments are required for the tool to run. The item description will tell you what each of the 

arguments means in more detail.  

Clip_analysis (in_features, clip_features, out_feature_class, {cluster_tolerance}) 



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     4 

The arguments in brackets {} are optional arguments. If you provide nothing in these places, the tool will 

still run, you just won't be using that option. You don't need to include the brackets in your code, they're 

just there to indicate that the argument is optional. 

ii. Continue Scrolling down on the page. The next thing you will see on the page is a table. 
The table describes the different arguments that can be passed to the tool (in the 
parameters column). It gives an explanation of what the argument does, and what data 
type in input or output. 

iii. Continue Scrolling down. There is a section labeled Code Samples. This section shows 
real examples of how to use the tool. Almost every tool in ArcMap will have a similar 
description page, so if you ever need guidance on how to use a tool this is an excellent 
resource.   

C. Preparing a Standalone Script 
1. To create a standalone script, Open an IDLE window.  

2. In the IDLE window Click File , then New File (your version of Python could say "New Window" 
instead of "New File"). 

3. In the window that opens Click File, then Save as. 

4. Save the file as Geospatial_Scripting_ex5.py. The .py extension is very important because it 
designated the file as a python program, which allows the python interpreter to use it.  

Note: Saving a standalone script will allow you to edit it and reuse it later. One huge advantage of 

writing code is that once you've written a useful tool, you shouldn't have to rewrite it. Code reusability is 

very important. As you begin to become a more advanced Python user you will begin to reuse old scripts, 

functions, and even write your own modules. 

5. As you learned in exercise 1, it is important to include a header in your script. On the first 
three lines Add a Comment with your name, the date, and a description of the script. 
Remember the # character will comment out a line in Python. Your script should now look 
similar to the example in figure 1.  

 

Figure 1: Showing the header at the end of Part 1, Section C. 

D. Importing Modules 
Modules were mentioned briefly in Exercise 3, and they are very important to understand. See the 

note, below.  



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     5 

Note: A module is a code library. A code library allows programmers to develop and share commonly 

used pieces of code as a special script or library file that can be referenced and loaded into the main 

program. Before you import any modules, you have access to what is called the "Python Standard 

Library". This is all of the pieces of code, methods, operators, etc., that you have used so far in this 

training. Additional pieces of code exist in modules. These modules then extend the functionality of 

Python to include the imported code. These extra pieces of code in the modules are not available unless 

you specifically import the module.  

For example, some of the math tools you used earlier are not part of the Python Standard Library, so 

they cannot be used when you first open Python. You have to import the module that they are a part of. 

For more information on modules and packages, see the resources section below or the glossary  

Tools in ArcMap are written in a Python module called ArcPy, which you receive with ArcGIS. These 

tools aren’t available normally in Python, so we have to tell the computer to import the ArcPy 

module so they will be. 

1. It is best practice to begin your Python script by first writing the header, then importing all 
your modules. On the line below your header, type: 

import arcpy 

2. That’s all there is to it. The arcpy module is now imported and tools from ArcMap can be used 
in your script. But ArcMap users will be aware that there are extensions in ArcMap that we 
may want to use that won’t be available at first. We want to turn on Spatial Analyst. To do so, 
type: 

arcpy.CheckOutExtension("Spatial") 

Note: The . in this statement is an example of dot notation. In general, the dot tells the Python 

interpreter where to look for something. In this case, you are using the CheckOutExtention method and 

the dot is telling Python to find that method in the ArcPy module. You have seen some dot notation in 

previous exercises, and will continue to see dot notation used through the rest of the exercise. 

E. Setting your Workspace Environment and Listing Rasters 
In your standalone script, you will need to set your workspace environment. This going to be your 

working directory, where Python will look for geospatial files and where it will place files that you 

process. 

1. Setting the workspace environment is a simple, single statement command. It is shown 
below. 

arcpy.env.workspace = r"C:/GeospatialScripting" 

What does this statement mean? arcpy is the site package where all the ArcGIS tools and class 

definitions are stored. The .env stands for environment, which is a class that you create an instance 

of every time you use ArcPy, and the .workspace is a property of that class instance, which we set 

equal to a path where the data for this exercise has been saved. Make sure to set the path to 

wherever you have saved your course data, this will become your working directory. 



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     6 

2. Now that we’ve set a workspace, we can use arcpy tools here. One very useful tool is 
.ListRasters(). In the line below your workspace statement, add the code: 

rasters = arcpy.ListRasters("L*","TIF") 

Now we have a variable equal to a list of rasters. In the ListRasters tool, we have passed two 

arguments. Both of these arguments are optional. The first is a "Wildcard", which we have told the 

tool to look for rasters beginning with an "L". The second argument is a file type, in this case .tif 

images. 

Part 2: Loops 

What is a loop? A loop is a piece of code that will execute repeatedly until some condition is met. 

Consider the following flowchart in figure 2:  

 

Figure 2: A flowchart showing the structure of a loop. 

You can see that this flowchart looks similar to conditional statements that you learned about in earlier 

exercises. But in this case, the true condition runs some code, then returns the code to before the 

condition to test it again, so it will run as long as the condition is true. There are several different kinds 

of loops, their structures all differing slightly, here you're going to write a for loop. 

A. For Loop 
1. On the next line of your script you’re going to write a simple loop called a "for loop". This loop 

is going to print out each of the rasters in the raster list you created in the last section. The 
syntax of a for loop is very similar to the syntax of an if statement. 

for image in rasters: 

 print(image) 

This means that the loop will cycle through the list rasters. Remember that the variable 
"rasters" is a list of the rasters in your workspace, which you created in the previous section. 
For each item in the list (in this loop we're calling the each item "image"), it will issue a print 



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     7 

statement. When there are no more items in the list, no more print statements can be issued 
and the loop will end.  

2. Try running the code. Click Run, then Run Module. In the Python shell, a list of the rasters in 
your geoprocessing folder should have printed out. Your script right now should look similar 
to figure 3. 

 

Figure 3: At this point in the exercise, your script should look similar to this. 

3. Let's try using another useful set of arcpy functions inside of this for loop. Delete the print 
statement that you wrote in the first step of this section. Create a new variable called desc 
and set it equal to arcpy.Describe(image) – This creates a geoprocessing describe object. 

desc = arcpy.Describe(image) 

4. On the next line Create a new variable called pixelSize and set it equal to 
desc.meanCellHeight. desc is an object, a collection of data, that holds information about the 
rasters in our list. The method .meanCellHeight will extract the cell size (the spatial resolution) 
of the raster. 

pixelSize = desc.meanCellHeight 

Be aware of the dot notation here. Now the dot is telling Python to look for the property 
"meanCellHeight" in the object, desc. 

5. Now issue a new print statement. This print statement is going to take a slightly different 
syntax than your previous print statements. See below: 

print'The image {0} has a resolution of {1} meters'.format(image, pixelSize) 

This print statements prints the string that is in quotes (the green text). The .format method 
fills in what should go in the numbers in the curly braces {}.  

6. To see what these lines of code have done, Click Run, then Run Module. Save the script when 
you are prompted to do so. Your script should look similar to the example below: 



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     8 

 

Part 3: Functions and Raster Math 

You learned about functions in exercise 3. Now you're going to get to create a useful function in your 
code and see how to call it. This function is going to create a Normalized Difference Vegetation Index 
(NDVI) image.  

A. Setting up the Function 
1. Recall from exercise 3 that to define a function you need to specify the name of the function, 

and the arguments that must be passed to it. We're going to name this function runNDVI, and 
the arguments it needs are a Near Infrared image and a Red image. Type the following code 
below your for loop: 

def runNDVI(nir, red): 

2. Like the for loop, everything that is indented after the colon is part of the function. Hit enter 
to go the next line. IDLE should automatically indent the code for you. 

B. Raster Math in the Body of the Function 
1. On the first line in the function you're going to calculate the numerator of the NDVI equation. 

Create a local variable called ndviNum. Remember that all variables created in the function 
will be local variables, which means they can't be used outside of the function they're created 
in. You'll want this variable to be an image of floating point values equal to the nir image 
minus the red image. The syntax for doing to is below: 

ndviNum = arcpy.sa.Float(nir-red) 

2. Hit enter to go the next line. IDLE recognizes Python syntax and will automatically indent your 
code. 

3. On the second line of the function you want to calculate the denominator of the NDVI 
equation. Create a local variable called ndviDenom. You'll want this to be an image of floating 
point values equal to the nir image plus the red image. The syntax for doing to is below: 

ndviDenom = arcpy.sa.Float(nir+red) 

4. Hit enter to go the next line. IDLE should still be automatically indenting the code for you. 



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     9 

5. To create the vegetation index, just complete the NDVI equation. Create a new local variable 
called outRaster and set it equal to the numerator over the denominator. See the syntax 
below: 

outRaster = ndviNum/ndviDenom 

6. Hit enter to go the next line. IDLE should still be automatically indenting the code for you. 

7. Now all you need to do is tell the function what to return when it's called later in the script. 
You want the returned image to be the index variable. So type return index. The complete 
function should look like this: 

def runNDVI(nir, red): 

ndviNum = arcpy.sa.Float(nir-red) 

ndviDenom = arcpy.sa.Float(nir+red) 

outRaster = ndviNum/ndviDenom 

return outRaster 

8. Hit enter to go the next line. After the return statement, IDLE should no longer automatically 
indent the code for you. If it does, type backspace to remove the indent. At this point your 
script should look like this: 

 

C. Calling the Function 
Calling a function is a relatively simple statement, but it is important to understand all of the pieces 
of the statement. The following steps will guide you through calling the function in a single line. 

1. The function runNDVI will calculate an NDVI image from a NIR and red image that you pass to 
it. To call this function, create a new global variable called ndvi, and set it equal to the 
function runNDVI. Remember that a global variable is any variable that is created outside of a 
function and it can be used anywhere else in the script. 

2. In the parentheses after the function you need to specify the arguments. Remember when 
you defined this function in the last section you set the necessary arguments to a NIR image, 
and a red image so the function will be expecting two images and it will use them in that 



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     10 

order. First pass the NIR image. This is band 5 of the Landsat image you are working with, and 
all of these bands are listed in the "rasters" variable that you created earlier. To point the 
computer towards this particular raster, type arcpy.sa.Raster(rasters[6]). So far your single 
line statement should look like this: 

ndvi = runNDVI(arcpy.sa.Raster(rasters[6]) 

3. So far this statement has called the runNDVI function and passed it the first argument, the 
NIR image. Now we must pass it the red image. The syntax for this is the same for the NIR 
image, but you need to separate the two with a comma, and change the list index (the 
number inside the square brackets) to 5. Your complete statement should look like this: 
ndvi = runNDVI(arcpy.sa.Raster(rasters[6]), arcpy.sa.Raster(rasters[5])) 

4. Now the ndvi variable is equal to the output of the runNDVI function, when you pass it a Near 
Infrared band and a red band.  

D. Saving the Raster 
1. Now that the vegetation index had been generated you need to save it to your computer so 

you can access it later. The raster class has a save method that we can use to get the image 
onto our machine. The argument passed to this method is an output path. Apply the save 
method to the ndvi variable. 

ndvi.save(r"C:\GeospatialScripting\ndviOut.tif") 

2. Add another print statement after saving the raster to indicate that the script is finished 
running. Print the string, 'done' 

print 'done' 

This print statement will execute after the raster has finished saving, so when we run the 
script it tell us when it is finished.  

3. Run the Script 

4. The print statements supplying the resolution of the images should appear first. The ndvi will 
take a moment to process. When the statement, 'done', appears in the shell, the script is 
finished. 



 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     11 

 

E. Viewing the Raster in ArcMap 
1. Open an ArcMap window. 

2. Click the add data button. 

 
3. In the add data window, navigate to where you saved the ndviOut raster.  

4. Open the ndviOut.tif raster. ArcMap will display the NDVI raster that you generated using the 
script that you just wrote. Values will be between -1 and 1, with higher values highlighting 
healthier vegetation. 

Part 4: Notes and Other Resources 

• GTAC offers additional trainings in Python. The tutorial of the course Introduction to Python for 
Geoprocessing is available here: 
http://fsweb.geotraining.fs.fed.us/www/index.php?view_unit=4867&lessons_ID=3040 

• ESRI provides significant documentation about arcpy syntax both in ArcMap and in online 
documentation. A link to some online resources is here:  

http://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-arcpy-.htm 

• The internet will prove to be an invaluable resource. If you're having any trouble with a script, 
chances are somebody else will have encountered an identical problem, found a solution, and 
provided it online. Often these solutions can be found on GIS forums. One such useful forum is: 

http://gis.stackexchange.com/  

http://fsweb.geotraining.fs.fed.us/www/index.php?view_unit=4867&lessons_ID=3040
http://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-arcpy-.htm
http://gis.stackexchange.com/


 

 

 

 
 Geospatial Technology and Applications Center     |     EXERCISE 5     |     12 

• Python is more than arcpy. The Python portion of this course focused on using ArcPy for 
geospatial processing. But Python can be used for so much more than just the tools in the ArcPy 
site package. There are many geospatial specific tools available to use. See this link for a sample 
of a few: 

http://www.data-analysis-in-python.org/t_gis.html  

Congratulations! You have learned some basic and very important skills about geospatial 
scripting in Python. This should have given you the chance to practice some of the skills you 
learned in earlier exercises and given you some resources to continue learning. Remember that 
when scripting you are learning a new language, and it will take time. Review this exercise and 
visit the additional resources provided to keep practicing your new skills. 

http://www.data-analysis-in-python.org/t_gis.html

