

Airborne synthetic aperture radar for nearreal-time wildfire monitoring using NASA's UAVSAR instrument

Jerry Heo (Team Lead) Erika Higa Mark Barker Christine Rains

Previous Results from Spring Term

dCA

Summer Term Project Objectives

Process all fire case studies from 2009-present and provide a comprehensive list of these fires with associated R² values between our UAVSAR derived differenced cross-polarized (dCA) product versus the Landsat derived dNBR products

Analyze field data and correlate it with the UAVSAR output (dCA)

Study Area

Project Partners

California Department of Forestry and Fire Protection (CAL FIRE)

U.S. Forest Service

UAVSAR

Ability to fly day or night for data acquisition

High spatial resolution (5m)

Penetrate cloud and smoke

UAVSAR Data

Urban

Methodology

Before

After

Difference

Results: Briggs Fire

dCA

dNBR

Vegetation Cover

Results: Mint Fire

dCA

Vegetation Cover

Results: Ken Fire

dCA

dNBR

urban

Results: Kirker Fire

dCA

dNBR

Case Study: Canyon Fire GeoCBI

Case Study: Canyon Fire Correlation

Correlation & Pixel Estimate Tool (PET)

PET = Inner Buffer / Outer Buffer

Fire Name	PET Value	Pearson Value	Primary Vegetation Type
Briggs	5.60	0.74	Shrub
Mint	3.75	0.69	Shrub
Morgan	4.97	0.70	Mixed: shrub, grass, tree
Kirker	1.06	0.10	Grass

Briggs Fire Google Earth Images

Briggs Fire PET: 5.6

Monte Fire Google Earth images

Lake Fire dCA

Fire perimeter

UAVSAR - dCA

Conclusions

Radar response to fire scars seems to be dependent on vegetation density

Good correlation observed with field-collected data from the 2011 Canyon Fire in Tehachapi

Detection level for burned areas during Lake Fire in June lower than expected

Method shows promise for active fire monitoring, but requires more analysis for full assessment of its capacity

Acknowledgements

Advisors

Jet Propulsion Laboratory: Dr. Sang-ho Yun California Institute of Technology: Dr. Mark Simons, Brent Minchew

Partners

California Department of Forestry and Fire Protection (CAL FIRE): Chief Chris Starnes and Chief Jana Luis

US Forest Service Remote Sensing Activities Center: Brad Quayle

Others

US Forest Service: Carl Albury & Lorri Peltz-Lewis Jet Propulsion Laboratory: Yunling Lou, Naiara Pinto, Natasha Stavros, Tim Miller UC Irvine: Sander Veraverbeke Orange County Water District: Scott Nygren and Chris Wilson NASA Armstrong Flight Research Center: Corry Rung, Paul Viscuglia, Tim Williams, Stuart Broce, Todd Renfro DEVELOP: Ben Holt and Gwen Miller