

.....

. . . . . . . . . . . . . . . . . . ..... ..... ..... . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . ..... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . .....

#### NORTHWEST NAZARENE UNIVERSITY

# **FireMAP/FDL Update**

Dale Hamilton PhD, Computer Science Cole McCall, Computer Science 2022 US Frontier Development Lab – Dept of Energy What if we could use ML-enhanced tools to prevent fires from starting or new fires from growing into large mega-fires?

NASA EPSCoR 2022-2023

Evaluation of Spatial Resolution and Spectral Band Selection on Wildland Fire Burn Severity Mapping







## WILDFIRE: MULTISPECTRAL ESTIMATION OF FUEL LOADS

FDL 2022 | Technical Presentation Tuesday 20 September 2022





PARTNER

Google Cloud Invidia EUSGS a strenger IS 👔



TRILLIUM US

SEL

## THE TEAM



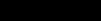
Cormac Purcell, Faculty



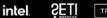
Ash Hoover, Partner Faculty

**ENERGY** 

FDL






Karol Bot Gonçalves, Researcher

<u>Researchers</u>: Amani Al Abri, Beichen Zhang, Huiqi Wang, Karol Bot Gonçalves <u>Research Support</u>: Carter Katzenberger, Cole McCall <u>Team Leads</u>: Dale Hamilton, Vít Růžička <u>Faculty</u>: Cormac Purcell, Ash Hoover



Google Cloud Invidia SUSGS

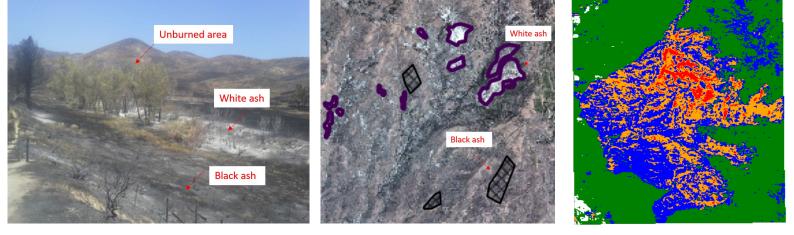


(plànet.





FDL


1. Introduction

• Wildfire is a very dynamic process!



≊USGS





Example of a burn severity map

(plànet.

intel

High Severity Moderate Severity Low Severity Unburned Enhanced Regrowth

SELI

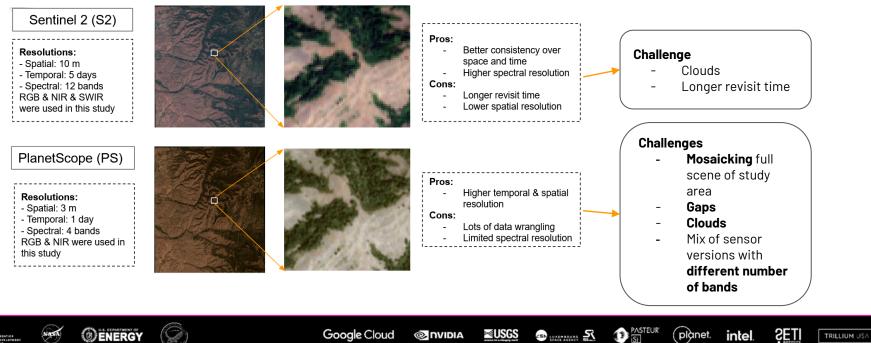
TRILLIUM USA

**Example of ground view** of fuel consumptions example (US)

**ENERGY** 

Satellite view of fuel consumptions example (Mesa fire - US)

Google Cloud



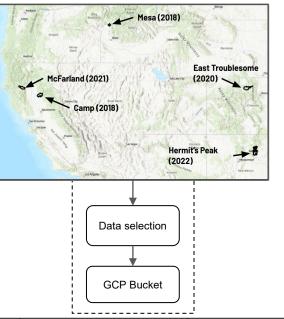

FDL



### 2. Methodology

• Data acquisition






### 2. Methodology

#### **Data acquisition**

- Ο Nearly 10 million square kilometers of PlanetScope imagery was obtained (across 5 different study areas throughout the Western United States).
- Ο As long as the imagery covered enough of the study area (>50%) and did not have significant cloud cover, each PlanetScope and Sentinel-2 image was added to the dataset and could be considered. either pre-fire, active fire, or post-fire imagery.
- Ο Only some locations and time frames were used as datasets for the tested methods.

( ENERGY





plànet.

intel

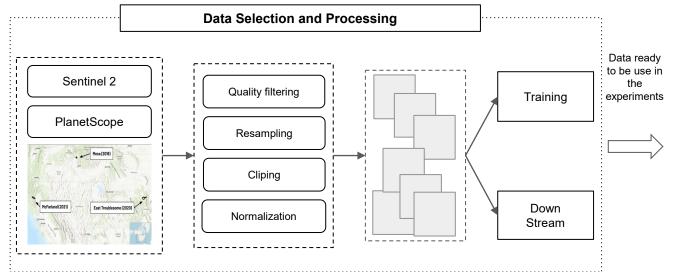
ST LUXEMBOURS ST



SELI

TRILLIUM USA

Google Cloud 


≊USGS





## 2. Methodology

- Data pre-processing
  - Once the data has been acquired it is placed in the GCP Wildfire Landing Bucket.
  - This data is not ready for any machine learning or geoprocessing and a few steps need to be followed first:



≊USGS

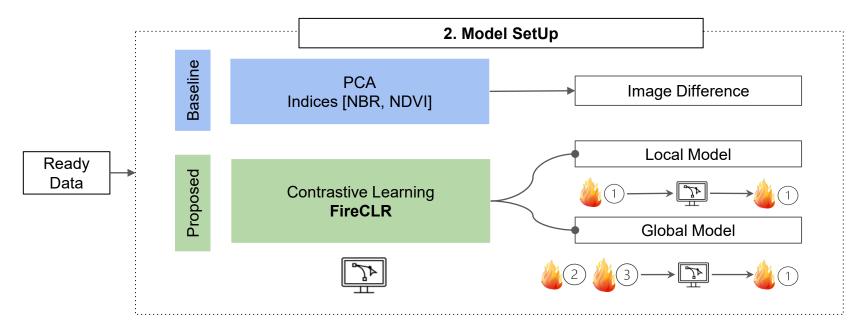




Google Cloud








FDL

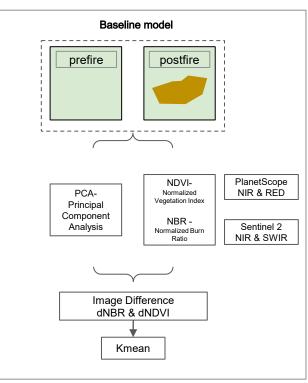


#### 2. Methodology - Model Setup

**ENERGY** 



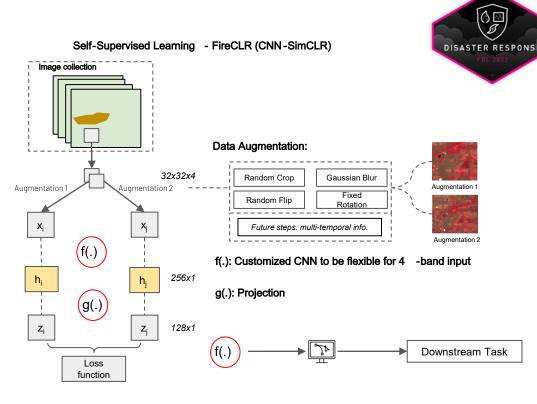
Google Cloud


≊USGS



(plànet.

intel.


#### 2. Methodology - Model Details



**ENERGY** 

✓ Pros: Easy to be built and explained

**x** Cons: Limited learning capability



√ Pros: strong performance on extracting representation, reduce the chance of learning trivia information, SOTA model, best results (so far)

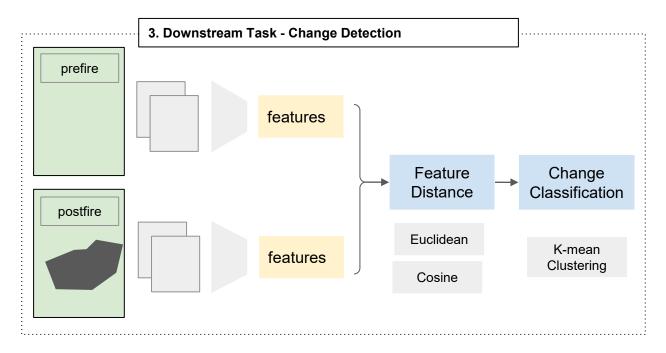
**ŠELI** 

TRILLIUM USA

plànet.

intel

**x** Cons: computation and space very expensive, reduced spatial resolution of the output when doing the downstream task


≊USGS

Google Cloud





#### 2. Methodology - Downstream Task



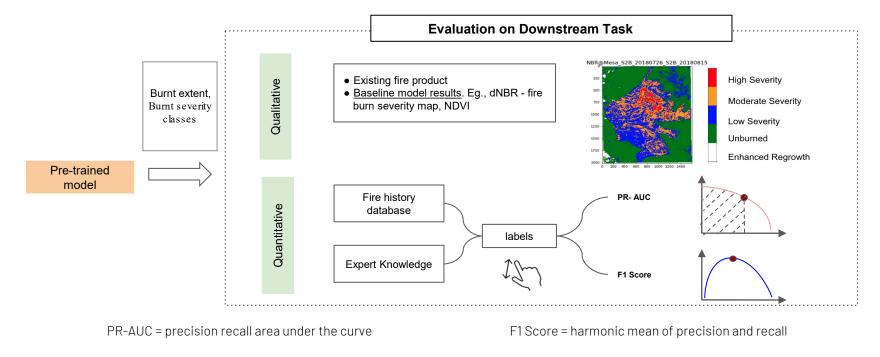
Google Cloud

≊USGS

(plànet.

intel.









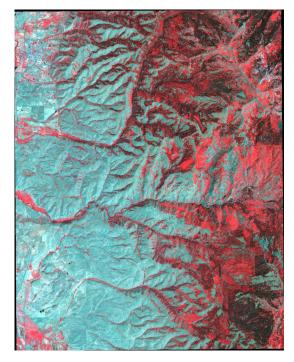

#### 2. Methodology - Model Evaluation

**ENERGY** 



Google Cloud

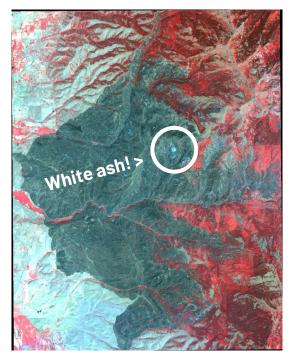
≊USGS


plànet.

intel



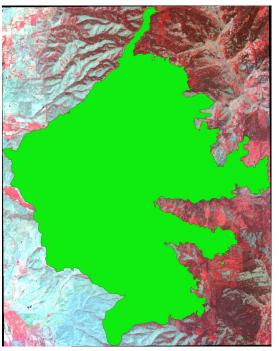
### Downstream task and validation: Mesa Fire in Idaho, US (2018)


**BEFORE** PlanetScope - July 26



**ENERGY** 

FDL


**AFTER** PlanetScope - August 15



≊USGS

Google Cloud

**LABEL** of the Burned Area



(plànet.

intel.

SELI

TRILLIUM USA



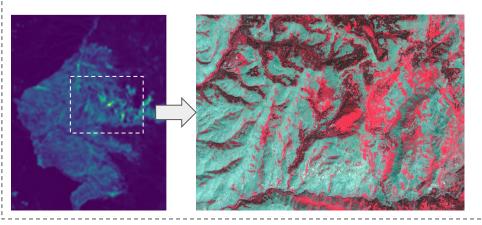


**ŠELI** 

TRILLIUM USA

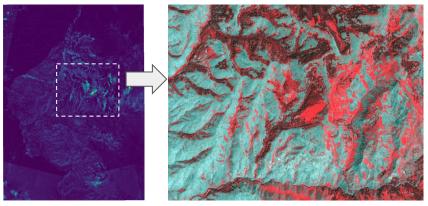
#### 3. Results

#### FireCLR <u>Local</u> model (S2)


 Trained and evaluated on same geographical location (different days - imagery at Mesa fire on July 26 & August 15)

Google Cloud

≈USGS

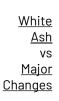

- PR-AUC = 0.99
- $\Delta$ (FireCLR baseline) = 0.04

ENERGY

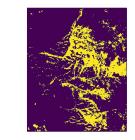


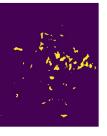
#### • FireCLR <u>Global</u> model (PS)

- Trained and evaluated on different geographical location (training using pre- and post-fire imagery at McFarland and East Troublesome fires / downstream using imagery at Mesa fire on July 26 & August 15)
- PR-AUC = 0.80
- $-\Delta$ (FireCLR baseline) = 0.13



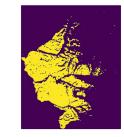

(plànet.


intel


#### FireCLR Downstream task and validation: Mesa Fire in Idaho, US (2018)

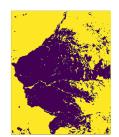
Manual Annotations **PS:** 3-cluster K-means on FireCLR representations **S2:** 3-cluster K-means on FireCLR representations
















FDL







#### F1-score based on the Annotated Labels

|                                                    | White Ash   | Black Ash   | Unburned    |
|----------------------------------------------------|-------------|-------------|-------------|
| <b>FireCLR</b> + K-means<br>(PS rgb+nir, res: 24m) | 0.90        | <u>0.86</u> | 0.78        |
| <b>FireCLR</b> + K-means<br>(S2 rgb+nir, res: 80m) | 0.51        | 0.82        | <u>0.79</u> |
| PCA + K-means<br>(PS rgb+nir, res: 3m)             | 0.90        | <u>0.86</u> | 0.76        |
| PCA + K-means<br>(S2 rgb+nir, res: 10m)            | 0.59        | <u>0.86</u> | 0.60        |
| dNBR + K-means<br>(S2 nir+swir, res: 10m)          | <u>0.93</u> | 0.78        | 0.76        |

**ENERGY** 

(Q)

Google Cloud

≊USGS 4

(planet. intel





#### 6. Conclusions

- Key take away points
  - We developed **an change detection method, assessing the burned severity from a multitemporal perspective**. Our method is **fully unsupervised**.
  - We implemented **baseline methods**(dNBR/dNDVI) and a **contrastive learning ML model called FireCLR** designed to work in two modes, **local** (trained on the same geographical location as evaluated) and **global** (trained on different geographical location than evaluated).
  - For both datasets and both modes, we report increased performance in comparison with the baseline models.
    For the local model, the PRAUC increased from 0.95 (baseline) to 0.99 (ML-model). For the global model, the PRAUC increased from 0.67 to 0.80.

The models were also evaluated using F1-score based on the annotated labels for black and white ashes, against minor and major changes, respectively.











#### 6. Conclusions

- Recommendations for **future works** 
  - The proposed future work involves training the SimCLR model to be **invariant to natural changes with longer temporal series of data**.
  - Explore different Planet products (or other vendors) and trade-offs in spatial and spectral resolution relevant to wildfire mapping.
  - **Compare the results produced using contrastive learning against an autoencoder** to see if one algorithm is superior for mapping post fire effects.
  - Use the burn scar mapping from successive days to **produce a fire progression map showing fire growth at a finer temporal scale** than achieved with this experiment which compared pre and post fire imagery.

≈USGS

25N LUXENBOU

• Investigate self-supervised contrastive learning for **identifying tree mortality**, resulting in a reduction in canopy cover.

Google Cloud











(2) ENERGY

#### BBC

#### **NEWS**

#### **Climate change: Europe's** warm summer shatters records

By Matt McGrath Environment correspondent

I days ago · ₱ Comments



Fires were common in many places including here in Portugal







**ŠELI** 



# FOR ALL HUMANKIND















Google Cloud

## 2023 NNU FireMAP efforts

Visiting Fellowship with The Australian National University Bushfire Research Centre of Excellence (Spring 2023 Sabbatical)

NASA funded Spatial/Spectral analysis

Reconcile 2022 US FDL Wildfire Challenge, Local vs Global methods

Support DOE funded 2023 US FDL Wildfire Challenge





Questions?