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The Fire Detection and Characterization Algorithm (FDCA) is NOAA’s baseline GOES-R fire detection algorithm 
 
Product resolution is 2 km and provides fire detections, fire radiative power (FRP), fire size, and fire temperature 
 
FRP is now provided for all detected fire classes; size and temperature only provided for highest confidence fires 
 
NOAA runs the FDCA on the 5 minute CONUS and 10 minute Full Disk sectors only 
 
As of 29 May 2019 it is Provisional for GOES-16 (available through AWIPS, PDA, and on CLASS) and Beta for 
GOES-17 (not publicly available, Provisional status expected in early July 2019) 
 
The GOES-17 “Loop heat pipe anomaly” reduces FDCA performance by making fires harder to find, but generally 
does not create false alarms (but it can) 
 
GOES-17 mitigation measures are being developed and expected to be deployed in late 2019 
 
Product quality assessments/validation is under way 



ABI Fire Detection 
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Context of algorithm development: Fire detection has a very wide range of users, from aerosol modelers with a 
high tolerance for false alarms to the emergency managers responsible for deploying personnel who have a low 
tolerance for false alarms to public and private users who seek the fastest detections possible with varying 
requirements for accuracy to broadcast media to NWS forecasters and more.  The ABI Fire Detection and 
Characterization Algorithm (FDCA, aka Fire Hot-Spot [FHS]) seeks to serve the needs of as many these users as 
possible.  It was built from the Wildfire Automated Biomass Burning Algorithm (WFABBA) used with the old 
GOES satellites. 
 
The ABI FDCA provides 2 km fire detection and characterization data for the five minute CONUS and ten minute 
Full Disk scans.  The one minute mesoscale sectors are not produced operationally at this time, but that could 
change if sufficient demand arises.  (If you want it, ask for it) 
 
The algorithm is contextual, it considers a candidate fire pixel in comparison to its neighbors, but there are 
some fixed thresholds involved.  FDCA performs its own opaque cloud screening: fires will shine through 
optically thin clouds and speed is of the essence, so sources of latency and product pre-requisites were reduced 
or eliminated if possible.  It also accounts for surface emissivity and atmospheric attenuation of the fire signal 
by water vapor in the atmosphere. 
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While fire detection is important, quantitative applications such as smoke modeling need to know how 
energetic the fire is.  The original ABBA was designed to provide fire size and fire temperature using a 
relationship described by Matson and Dozier that correlated the fire temperature and pixel fraction with the 
observed radiances in the ~4 µm and ~11 µm bands.  Later on, fire radiative power (FRP) caught on as a 
simplified way to assess a fire’s character. 
 
Due to the subpixel nature of fires: 
•  The Dozier Method and FRP are describing a hypothetical, uniform fire with those properties that produces 

the same radiance signature 
•  The size should not be taken literally 
•  FRP is the best proxy for intensity 

ABI Fire Characterization 
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Fire in the ABI Bands 
Camp Fire 
8 Nov 2018 
8:02 AM PST – 5:57 PM PST 
 
All 16 bands, dynamically scaled 
so there is some flickering and 
noise is amplified at times. 
 
Fire signal in many, but not all 
bands (and not visible in bands 
1-4, though fires can appear in 
bands 3 and 4 at night) 

5 



 3F-6 

Sensitivity and Detection: The 
Camp Fire 

On 8 November 2018, at about 6:30 AM PST, the fire that would shortly destroy Paradise, CA and overtake the 
Tubbs Fire as California’s worst, began.  GOES-17 data was unavailable as the satellite was drifting to its station 
at 135.2°W, but GOES-16 could see the area, albeit at an angle into a relatively hilly region. 
 
Despite the less than ideal view angle and relative position, GOES-16 first noted a heat signature at 6:22 AM 
PST (14:22 UTC), though the algorithm did not identify it as a fire until later.  GOES-16 ABI only provided five 
minute imagery, however.  Under normal circumstances GOES-17 would provide one minute imagery over that 
region by default. 
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The Camp Fire 

Early hours of the Camp Fire on 8 
November 2018. 
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The Camp Fire 

Early hours of the Camp Fire on 8 
November 2018. 
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The Camp Fire 

Early hours of the Camp Fire on 8 
November 2018. 
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The Camp Fire 

Early hours of the Camp Fire on 8 
November 2018. 
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The Camp Fire 

Early hours of the Camp Fire on 8 
November 2018. 
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The Camp Fire 

Early hours of the Camp Fire on 8 
November 2018. 
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The Camp Fire 

Early hours of the Camp Fire on 8 
November 2018. 
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The Camp Fire 

Early hours of the Camp Fire on 8 
November 2018. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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 3F-22 

The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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The Camp Fire 
The visible, 3.9 µm, 11.2 µm, 3.9 µm minus 11.2 µm radiance difference in 3.9 µm radiance space, and FDCA 
fire temperature, size, and power are dynamically scaled to the minima and maxima of the data. 
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ABI Fire Sensitivity 
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On the evening of 24 February 2019, a 
NWS forecaster out of Green Bay was 
looking at 3.9 µm, imagery and saw a 
hotspot south of Oshkosh.  Concerned 
that a major fire or perhaps plane crash 
had occurred, he called Winnebago 
County Emergency Services and learned 
that it was a house fire.  The fire was 
called in at 10:17 pm CST, it was first 
visible in the mesoscale sector imagery 
at 10:39 pm CST. 
 
AWIPS MESO sector loop courtesy Scott Lindstrom: 
http://cimss.ssec.wisc.edu/goes/blog/archives/32041 
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The Rhea Fire 
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Rhea Fire 
 

12 April 2018, 
16:00:29 UTC 

to 
13 April 2018, 
23:59:29 UTC 

 
 

1920 frames of 
fire data in 32 

hours 
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The Rhea 
Fire 
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Selected time steps of the 
fire product from the Rhea 
Fire. 
 
Generally the product 
matches what we would 
expect to see based on the 
3.9 µm band, except at 10 
UTC when clouds interfered in 
the scene. 
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The Rhea Fire 
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The Rhea Fire 

33 Image credit: Inciweb 
https://inciweb.nwcg.gov/incident/5746/ 
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Validation of Fire Detection and 
Characterization 

 There are few reliable datasets of fire occurrence, let alone properties.  Those that do exist tend to be very 
limited in coverage in time and space, limited their utility for validation. 
 
Fire locations from GOES ABI can be compared to those obtained from VIIRS and MODIS, as well as the smaller 
number of points from Landsat-class sensors.  FRP can be compared between the polar platforms and GOES, 
though caveats apply.  There is not a good way to validate the results of the Dozier Method, as they represent a 
hypothetical fire within that specific pixel.  As a result, the standard for assessing its success is to verify that its 
results reproduce the input data. 
 
For the purposes of GOES-R series validation, a hybrid approach is in use.  Routine validation is done by a 
combination of visual inspection – essentially comparing the product outputs to the satellite imagery, and 
detection matchups against VIIRS and MODIS.  So-called “deep dive” validation uses Landsat-class data (<50m 
pixels) to verify fire locations.  FRP is being validated by comparison with results from MODIS and VIIRS.  In 
general FDCA FRP is higher than from those satellites, which may reflect the “oversharpening” produced by the 
original remapping of ABI data.  The remapping was changed in April 2019 and new results are not yet 
available. 
 
Following FRP comparisons courtesy Shobha Kondragunta1, Fangjun Li2, and Xioayang Zhang2 
1) NOAA/NESDIS/Center for Satellite Applications and Research 
2) Geospatial Sciences Center of Excellence, South Dakota State University 
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FRP Comparison, Time Series (3/24/2018)  
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FRP Time Series (E) 

FRP Comparison, Time Series (3/24/2018)  
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FRP Time Series (F) 

Good agreement for E and F between GOES-16, GOES-15, and VIIRS – these 
are generally flat locations.  Unclear why MODIS disagrees a fair amount. 

FRP Comparison, Time Series (3/24/2018)  
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B	

FRP Comparison, Time Series (3/14/2018)  
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FRP Time Series (A) 

Agreement is not great, but not awful – could be due to multiple factors. 

FRP Comparison, Time Series (3/14/2018)  
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FRP Time Series (B) 

Notably poor agreement between G16 and G15 - Why? 

FRP Comparison, Time Series (3/14/2018)  
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3.9µm data, GOES-16 on the left, GOES-15 on the right 
The fire in question (inside the yellow circles) looks very different – why? 

FRP Comparison Between Platforms 

41 



Location B is in the Spavinaw Wildlife Refuge, and the hills generally slope to the east, 
north, and south.  The view from the west is somewhat screened by the terrain, causing 
GOES-15 to have a poor view of the fire. 

FRP Comparison, Time Series (3/14/2018)  
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ABI Fire Detection Wrap-up and 
Caveats 
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Initial version of algorithm inherited the WFABBA’s tendency to produce false alarms during the day, particularly 
when water clouds were involved and near sunrise and sunset.  An update that largely eliminates that problem 
is in the process of being implemented in the GOES-R Ground System, expected to be live in June 2019.  All 
results shown in this presentation were produced with the new version of the algorithm. 
 
There are known false alarms caused by solar power plants and reflective ground surfaces. 
 
Algorithm performance for cold backgrounds is currently diminished, if the brightness temperature is below 
about 270 K the algorithm generally ignores the pixels, which has led to missing a large number of fires during 
the colder months. 
 
Bright reflective surfaces can be inadvertently be flagged as cloudy. 
 
Fixes for these issues are in development. 
 
Algorithm will reach full validation, at which point the above issues and GOES-17 problems mitigated, some 
time in 2020. 
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The End 
Contact email: 

chris.schmidt@ssec.wisc.edu 
 

Special thanks to: 
Ivan Csiszar (NOAA) 

Wilfrid Schroeder (NOAA) 
Joanne Hall (UMD) 

Shobha Kondragunta (NOAA) 
Fangjun Li (GSCE) 

Xiaoyang Zhang (GSCE) 
Jim Nelson (CIMSS) 

Mat Gunshor (CIMSS) 
Tim Schmit (NOAA) 
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Backup Slides 
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Planck Curves 
Instruments like ABI, the old GOES Imager, MODIS, and VIIRS can detect fires. Algorithms for all of them 
primarily rely on a band at ~4 µm compared to a band at ~11 µm, taking advantage of the behavior of the 
Planck function. As an emitter heats up, its peak emission moves to shorter wavelengths. 
 
Many bands can “see” fire signals, but around ~4 µm is best suited because for the range of temperatures at 
which biomass burns, the strongest response occurs at ~4 µm.  That wavelength is mostly, but not completely, 
out of the range of influence of reflected sunlight, and relatively unaffected by water vapor, though a correction 
is still needed to account for attenuation when calculating properties. 
 
Fires are generally much smaller than the pixel itself, occupying a few percent of the footprint at most.  They are 
still detectable because the burning portion emits one or more orders of magnitude more radiance than its 
surroundings at ~4 µm. 
 
Note: Diffraction causes an uneven response across the pixel footprint, giving a higher weight to energy coming 
from the center of the pixel than it does to energy from the fringes.  That leads to a fundamental limit to the 
ability to characterize fire properties. 
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Planck Curves 
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Planck Curves 

Planck curves for various combinations of fire temperature and pixel fraction.  The background is held at 285 K 
in all cases.  The calculations assume that the pixel fraction that is burning is of uniform temperature and there 
is no diffraction.  A real fire contains a range of burning conditions: different temperatures, different 
emissivities, different attenuation due to smoke and water vapor variations on small scales, variations in terrain 
changing how the satellite sees the fires, and so on. 



Fire Characterization 
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While fire detection is important, quantitative applications such as smoke modeling need to know how 
energetic the fire is.  The original ABBA was designed to provide fire size and fire temperature using a 
relationship described by Matson and Dozier that correlated the fire temperature and pixel fraction with the 
observed radiances in the ~4 µm and ~11 µm bands.  Later on, fire radiative power (FRP) caught on as a 
simplified way to assess a fire’s character. 
 
Due to the subpixel nature of fires, the Dozier Method and FRP are describing a hypothetical, uniform fire with 
those properties that produces the same radiance signature.  The size in particular should not be taken literally. 



Fire Products: Fire Size and 
Temperature Estimated with two simultaneous equations (aka the Dozier Method): 

​𝑳↓𝟒 (​𝑻↓𝟒 )=	 ​𝒑𝑳↓𝟒 (​𝑻↓𝒕 )	+	(𝟏−𝒑)​𝑳↓𝟒 (​𝑻↓𝒃 ) +	(𝟏− ​𝜺↓𝟒 )​𝝉↓𝟒𝒔 ​
𝑳↓𝟒𝒔𝒐𝒍𝒂𝒓 	​𝑳↓𝟏𝟏 (​𝑻↓𝟏𝟏 )=	 ​𝒑𝑳↓𝟏𝟏 (​𝑻↓𝒕 )	+	(𝟏−𝒑)​𝑳↓𝟏𝟏 (​𝑻↓𝒃 )	

L4 4 µm observed radiance 

L11 11 µm observed radiance 

L4s 4 µm reflected solar radiance term 

p proportion of pixel on fire 

1-p proportion of pixel not on fire 

T4 4 µm observed brightness temperature 

T11 11 µm observed brightness temperature 

Tb 
Background/non-fire brightness 
temperature 

Tt 
Average instantaneous target 
temperature of sub-pixel fire 

τ4s Transmittance of the 4 µm solar term 

ε4 4 µm emissivity 

The equations are solved for 𝒑 and ​𝑻↓𝒕 .  and ​𝑻↓𝒕 . 
Combined with pixel size, the method yields quantities 
that can be used to estimate emissions.  This method 
predates FRP and some models still use it. 
 
The size and temperature represent a hypothetical fire 
of that size and uniform temperature that would 
produce the same radiance signal.  They should not be 
used independently. 
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Fire Products: Fire Radiative Power 
(FRP) 

LMIR 4 µm observed radiance 

LB,MIR 4 µm calculated background radiance 

Asample Area of pixel 

a A constant (function of instrument SRF) 

𝑷𝒐𝒘𝒆𝒓=𝑨𝜺𝝈​𝑻↑𝟒  
Physical definition of power: 

A = Area 
T=Blackbody temperature, 

𝜺=Emissivity 
𝝈=Stephan-Boltzman Constant 

​𝑭𝑹𝑷↓𝒅𝒆𝒇 = ​𝑨↓𝒔𝒂𝒎𝒑𝒍𝒆 
𝜺𝝈∑𝒌=𝟏↑𝒏▒​𝒑↓𝒌 ​𝑻↓𝒌↑𝟒   

For a mixed pixel of fire and non-fire: Approximation using radiances: 

​𝑭𝑹𝑷↓𝑀𝐼𝑅 = ​​𝑨↓𝑠𝑎𝑚𝑝𝑙𝑒 𝝈/𝒂 (​
𝑳↓𝑀𝐼𝑅 − ​𝑳↓𝐵,𝑀𝐼𝑅 ) 

pk Instantaneous proportion of pixel on fire 

Tk Instantaneous target temperature of sub-pixel fire 

ε Emissivity of fire (typ. assumed to be 1) 

σ Stefan-Boltzmann constant 

Using FRP: 
𝑴𝒂𝒔𝒔 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 ∝𝑭𝒊𝒓𝒆 𝒓𝒂𝒅𝒊𝒂𝒕𝒆𝒅 𝒆𝒏𝒆𝒓𝒈𝒚= ∫𝟎↑𝒕▒𝑭𝑹𝑷(𝒕)ⅆ𝒕 	
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