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Research Objectives

» The overall objective of this research is to develop innovative
and globally applicable methods for early detection, near real-
time monitoring of wildfires and rapid damage assessment
using Earth Observation (EO) big data and deep learning.

—
{a)
&7

SUSTAINABLE

_ Ty X - Flllsnl"‘"[
DEVELOPMENT e g e PN | AGRENENT |/= ‘
GUALS = : Sl - s N,/
it 2 e 4 R » LV e ‘




Introduction

> For wildfire detection & monitoring

- VIIRS and MODIS Active Fire Hot Spots &
burned area maps are often used for
contextual awareness



Multisensor EO Time Series for Wildfire Monitoring

2021 Lytton + Sparks Lake Fires, BC, Canada
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SAR-based kMaps on 18 wildfire events, of which 16 events were used for training and validation, while the rest two (q and r) were used
only for progression mapping. All kMap images are visualized in the false color composite of [KCR, kVH, kVV]. The yellowrish denotes kCR
and kVH have higher values than kVV, while the cyanrish denotes kVH and kVV contribute more to highlighting burned areas.
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RCM SAR Detection of Wildfires

SAR Detection of Ljusdals-komplexet in 2018
Sentinel-1 C-and SAR ALOS L-Band PalSAR
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Validations

To quantitatively assess the SAR-based

burnt area results:

® Sentinel-2 dNBR is segmented into a
binary map of burnt and unburnt areas
and used as the reference maps
together field data and WorldView-3
imagery

® 10000 validation points are randomly

selected from burnt and unburnt areas
respectively
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Early Detection of Wildfires with GOES-R Time Series
& Deep GRU Network
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Zhao, Y., Y. Ban and A. Nascetti. 2021. Early Detection of Wildfires with GOES-R Time-Series and Deep GRU Network. Proceedings of IGARSS’2021, Brussels, Belgium.
Zhao, Y. and Y. Ban. 2022. GOES-R Time Series for Early Detection of Wildfires with Deep GRU Network. Remote Sensing. Remote Sensing, 14(17), 4347.
https://doi.org/10.3390/rs14174347
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Table 4. Comparison over all study areas for FIRMS detection time and Deep GRU network detection time, “+1' means the detection of the active fire happens on the next day of the
start date. The name of the wildfire are either named after fire names from The Department of Forestry and Fire Protection of California, fire numbers from British Columbia Wildfire
Service, fire numbers from 2020 Major Amazon Fires Tracker, developed by InfoAmazonia, and the location of the wildfire where it happens.

Location

Fires

Start Date

Location FIRMS Time ‘GOES Time Result

Creek fire 5 September 2020 (-119.30, 37.20) 09:06 06:00-07:00 Earlier

B'"eﬂzdge 26 October 2020 (~117.68, 33.88) 09:06 06:00-07:00 Earlier

s"‘:::“ 26 October 2020 (~117.66, 33.74) 07:54 06:00-06:59 Earlier

Bond Fire 2 December 2020 (-117.67, 33.74) 09:12 08:00-09:00 Earlier

California, Glass Fire 27 September 2020 (-122.50, 38.57) 21:06 11:00-12:00 Earlier

us
North Complex 14 August 2020 (-120.12, 39.69) 05:47 20:00-21:00 Earlier
Fire +1 day

Camp Fire 8 November 2018 (~121.43, 39.81) 18:14 15:00-16:00 Earlier

Tubbs Fire 8 October 2017 (~122.63, 38.61) 06:32 05:00-06:00 Earlier

Carr Fire 23 July 2018 (-122.62, 40.65) 21:08 21:00-22:00 Similar

Dixie Fire 14 July 2021 (-121.42, 39.81) 20:30 05:00-06:00 Earlier
"“’"“;r'e'“"" 7 September 2020 (~122.45, 44.15) 09:00 05:00-06:00 Earlier

Oregon
State, Slater fire 7 September 2020 (-123.38,41.77) 20:24 15:00-16:00 Earlier
us

Bew:;“eek 17 August 2020 (-121.62, 44.77) 09:12 10:00-11:00 Later

brazil_fire_1214 5 September 2020 (-51.61,-9.894) 16:06 14:00-15:00 Earlier

brazil_fire_668 1 September 2020 (-54.49,-10.52) 04:42 00:00-01:00 Earlier

A';;‘I’I"' brazil_fire_675 31 August 2020 (-53.83, -10.80) 05:00 00:00-01:00 Earlier
brazil_fire_1341 2 September 2020 (-54.07, -12.87) 04:06 00:00-01:00 Earlier

brazil_fire_728 2 September 2020 (-52.10, -8.24) 17:00 14:00-15:00 Earlier

Washington Palmer fire 18 August 2020 (-119.56, 48.83) 22:00 22:00-23:00 Similar
State, US Cold spring fire 7 September 2020 (-119.49, 48.29) 11:00 06:00-07:00 Earlier
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Zhao, Y., Y. Ban, H. Hu, & J. Sullivan. Tokenized Time-Series Satellite Image Segmentation with Transformer Network for Active Wildfire Detection. Submitted to IEEE

Transaction on Geosicence and Remote Sensing.
Hu, X., Y. Ban, and A, Nascetti. 2021. Uni-Temporal Multispectral Imagery for Burned Area Mapping with Deep Learning. Remote Sens., 13, no. 8: 1509.

Hu, X., Y. Ban, and A, Nascetti. 2021. Sentinel-2 MSI data for active fire detection in major fire-prone biomes: A multi-criteria approach. International Journal of Applied Earth

Observation and Geoinformation, 101, 102347.
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EO-AI for Early Detection of Active Wildfires

16



VIIRS Time Series for Early Detection of Wildfires

SAR-AIl for NRT Monitoring of Wildfire
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Ban, Y., Zhang, P., Nascetti, A., Bevington, A. R., Wulder, M. A., 2020. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time
Series and Deep Learning. Scientific Reports, 10(1), 1-15. https://www.nature.com/articles/s41598-019-56967-x.
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EO-Al for NRT Monitoring of Wildfire
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Zhang, P., Y. Ban and A. Nascetti, 2021. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and
optical time series. Remote Sensing of Environment, 261, 112467.
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A Large-Scale Satellite Image Dataset for Deep Learning in Wildfire Monitoring

Training Set (2017/2018)

Testing Sct (2019)

I 111: Closed forest, evergreen needle leaf 1] 80: Permanent water bodies
[17] 126: Open forest (not match others) [ 121: Open forest, evergreen needle leaf
[ 30: Herbaceous vegetation, 114: Closed forest, deciduous broad leaf [l 20: Shrubs
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Zhang, P., X. Hu and Y. Ban. 2022. Wildfire-S1S2-Canada: A Large-Scale Sentinel-1/2 Wildfire Burned Area Mapping Dataset Based on the 2017-2019
Wildfires in Canada. Proceedings of IGARSS 2022.
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Evia - Greece
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Attika - Greece
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MOUNT PENTELI - GREECE
Event: 20/07/2022

Map: 21/07/2022

09:06
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EO Time Series for Near Real-Time
Wildfire Monitoring

2021 Dixie Fire, California,


https://emergency.copernicus.eu/mapping/ems-product-component/EMSR527_AOI02_GRA_PRODUCT_r1_RTP01/1
https://emergency.copernicus.eu/mapping/ems-product-component/EMSR598_AOI01_GRA_PRODUCT_r1_RTP01/1
https://emergency.copernicus.eu/mapping/ems-product-component/EMSR527_AOI01_GRA_PRODUCT_r2_RTP01/1
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EO Time Series for Near Real-Time Wildfire Monitoring

2017 Elephant Hill Fire, BC, Canada
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Transfer Learning for Fraser Island Fire,

25
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S2 BaseMap: 2018-09-22
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Burn Severity Mapping with Multispectral Imagery
Using Deep Semantic Segmentation Models

" (1) Raw MTBS data set (2010-2019)
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Hu, X., P. Zhang and Y. Ban. 2022 Large-Scale Burn Severity Mapping Using Multispectral Imagery and Deep Semantic Segmentation Models. ISPRS Journal of
Photogrammetry and Remote Sensing (Revised manuscript under review).
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Sentinel-2 MSI Data for Burn Severity Mapping
in Sweden with Deep Learning
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Wildfire Monitoring App Based on Google Earth Engine
- Examples in British Columbia, California & EU
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