Machine Learning based Smoke Detection

May 29, 2019 Kinshuk Govil

Overview

- Satellite vs. Terrestrial imagery
- Machine Learning setup
- Sample images
- Results
- Future

Satellite vs. Terrestrial imagery

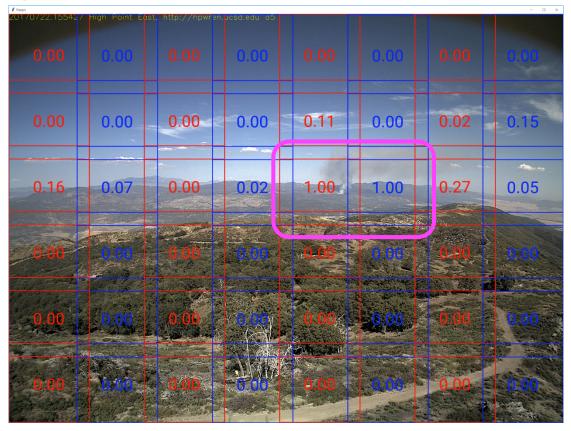
- Satellites imagery
 - Pros: Can scan large area in single image
 - Con: Coarse grain resolution (single pixel is > 500 meters wide or more)
 - Geostationary satellites don't have time gaps, but resolution is worse
 - Early detection requires looking for single pixel with abnormal value
- Terrestrial imagery from vantage points
 - Visible light optical cameras installed on fire towers on mountain tops
 - Pros: Good resolution (single pixel is ~10 meters wide at 10 miles away)
 - Pros: ~1 minute time gap
 - Cons: Terrain/topography and visibility limit range to ~10 miles => tower every ~200 sq miles
 - Early detection requires recognizing shape, color, or motion with >1000 pixels of smoke plume
 - Commercial smoke detection software uses hand coded algorithms (been around for decade)
 - We have achieved better accuracy using modern machine learning based image object recognition technology

Machine Learning Setup

- Supervised training with two classes: smoke and not-smoke
- Training Google's Inception v3 model architecture with wildland images
 - Originally designed to detect 1000 objects such as dog, cat, cup, car, barn, castle, etc..
 - Inception v3 expects 299x299 pixel images (images are resized if needed)
 - Shrinking large images would lose smoke, so segment into overlapping 299x299 squares
- Training data for smoke
 - Match Calfire's historical fire data with camera locations to search archived images
 - Volunteers mark smoke boundary rectangle
 - Generate 10 segments (flipped and recentered) per smoke image
 - 2 (Flip + original) x 5 (center, top left, top right, bottom left, bottom right)
 - ~6,000 manually labeled images => ~60,000 smoke segments
- Training data for not-smoke
 - Segments of first smoke image for each fire where segments don't overlap smoke rectangle
 - False positive segments from earlier trained models

Sample test set true positive result

- Two squares > .5
- Clouds have low scores



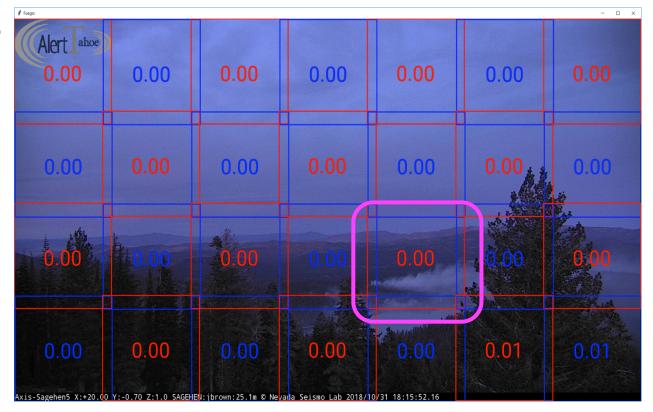
Sample test set true negative result

- Highest score: 0.14
- Fog correctly ignored

✓ Furgx 20181107.062314	Boucher Hill	South, http://hpw	r <mark>en.ucsd.edu d</mark> i				- 0 X
0.00	0.00	0.00	0.00			0.00	0.00
0.01	0.03	0.01	0.01	0.00	0.00	0.01	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.14	0.01	0.00	0.00
0.00	0.00	0.04	0.07	0.01	0.04	₽ 1 ₽³ ₩	R E 99

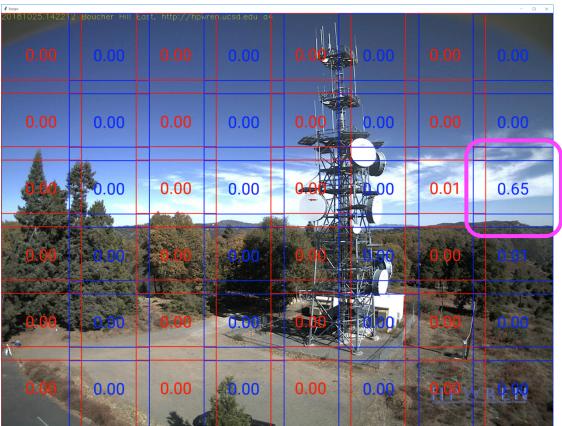
Sample test set false negative result

• Too similar to fog?



Sample test set false positive result

- Highest score: 0.65
- Such segments are sent for retraining
- Increasing threshold based on last few days of data filters out 60% of these



Results

- ML accuracy on test set
 - 250 full sized images not used in training
 - 100 smoke (ideally should be much bigger)
 - 150 non smoke
 - Requirements
 - Non smoke: Every segment must be classified as not smoke
 - Smoke: At least one segment must be classified as smoke
 - Types of models:
 - Top most layer, fine-tune, full training
 - F-1 score: 0.85
- Able to detect 2018 Holy fire from image 2 minutes before 9-1-1
- False positive rate: once per camera field of view per 2 days

Future

- Improve accuracy of this model
 - Continue to retraining from false positives
 - Get more smoke images from volunteers
- Experiment combining with new models for terrestrial images
 - Subtract images to capture motion of smoke
 - Very Near IR up to 1um (standard silicon without IR cut filter): 1 pixel ~ 10m
 - IR 0.7-1.7um (InGaAs or CQD), 7-14um (micro bolometer): 1 pixel ~ 100 m
 - Image object recognition unsuitable for detecting few pixels
 - Different ML approach may help
 - Satellite image detection techniques may help
- Combine with satellite imagery to leverage best of both
 - Higher confidence alerts if something detected in both systems
 - For one sided detections: Sending both sets of images will help people decide