Wildfire risk and treatment effectiveness of protecting highly valued resources and assets with fuels management

Dr. Mark Cochrane
Dr. Patrick Freeborn

Dr. Matt Thompson
Dr. Dave Calkin

Dr. Alan Ager
Project Goals

SCIENCE

- Expand the knowledge base regarding risk-based assessment of fuel treatment effectiveness
- Better establish linkages at the nexus of fuel treatment planning, suppression response planning, and wildfire incident decision making

DELIVERY

- Yield significant improvements in:
 - How fuel treatments are designed and implemented
 - How incident managers understand and respond to wildfire-treatment interactions
Motivation

Risk-Based Decision Support

WFDSS: Wildland Fire Decision Support System

Zaca Fire, CA
4 August 2007 - July 31, 2007

Major Values-at-Risk per FSPro Fire Spread Probabilities
14 days as of 3 August 2007

FSPro Fire Spread Probability
- 1%
- 4 - 15%
- 16 - 30%
- 31 - 50%
- 51 - 80%
- > 80%

FSPro Spread Barriers
- Wildfire Threats
- Building Densities: Vertical Co
- Hazardous Materials: Santa Barbara Co
- Water: Dams & Reservoirs
- Water Supply: Well
- Water Treatment Plants
- Water Pumps - Impound - Canal
- Powerlines
- Industrial Plants
- Power Plants
- Communication Towers
- Oil & Gas Transmission Lines
- Airports
- Commercial Activity
- Police Stations
- Hospitals
- Fire Stations
- Schools
- Military
- Hazardous Materials
- Others

Jurisdiction
- Private
- State
- BLM
- DOI
- National Forest
- Designated Wilderness
- Other Jurisdictions
- Building Clusters: Santa Barbara Co

*Building Clusters represent the center of parcels where major values are located. Mid-1990s values indicate significant improvements as present. One or more structures and/other improvements may exist proximate to these point locations.

CAUTION Refer to all photos or local knowledge for exact structure and other feature locations.

FSPro RAVAR: Rapid Assessment of Values-at-Risk

SAN LUIS OBISPO COUNTY

KERN COUNTY

SANTA BARBARA COUNTY

VENTURA COUNTY

City of Santa Barbara
City of Carpinteria

PACIFIC OCEAN

1:120,000 0 5 10 15 20 Miles
Risk-informed fuels management

- How do fuel treatments:
 - affect spatial patterns of wildfire likelihood and intensity?
 - affect the exposure of highly valued resources and assets (HVRAs) to risk factors?
 - affect the response of HVRAs to wildfire?
How does fuel treatment effectiveness vary with:

- Geographic characteristics
- Treatment type & age
- Fire weather conditions
- Spatiotemporal wildfire-treatment interactions
- Suppression operations
Basic Approach

- Earth Observation data
 - Landsat: burn severity & fuels
 - MODIS: active fire detection & progression maps

- Stochastic wildfire simulation

- Geospatial analysis

- Exposure & risk assessment
E.O. Data >> Treatment Effects

ON-SITE: SEVERITY

OFF-SITE: PROBABILITY & INTENSITY

Wimberley et al. 2009
Fuel Treatments & Exposure
How do treatments of varying types and ages affect burn severity?

How sensitive are fuel treatment impacts on fire size to different wind speeds?
Results: HVRA Exposure

Prevented Spread

Promoted Spread
Results: Suppression Actions

Las Conchas Fire Burn Probability Analysis

- Ignition Point
- Valle II Fuels Project
- Chochita Mesa Fuels Project
- 2010 South Fork Fire
- 2000 Cerro Grande Fire
- 1998 Oso Fire
- 1996 Dome Fire

>10 year old Treatments
- Activity Fuels Broadcast Burn
- Natural Fuels Broadcast Burn
- Precommercial thinning - individual or selected trees
- Las Conchas Perimeter

Legend:
- Created Dozer Line
- Completed Line
- Hand Line
- Uncontrolled Fire Edge
- July 5 Perimeter

Treatments Promoted Fire Spread
- 0 - 50 ('+')

Treatments Prevented Fire Spread
- 0 - 80 ('+')

Legend:
- Completed Dozer Line
- Completed Line
- Hand Line
- Uncontrolled Fire Edge
- July 5 Perimeter
Expanding analysis of treatment effectiveness
- HVRA response to fire and avoided losses
- Temporal dynamics; windows of suppression opportunity
- Suppression effectiveness and safety
- Incident decision making
Planned deliverables

- Treatment Design
- Treatment Evaluation
- Treatment Decision Process
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Restoration</th>
<th>Protection</th>
<th>Protection</th>
<th>Protection</th>
<th>Restoration</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire regime</td>
<td>Low severity (+ fire)</td>
<td>Mixed severity (+/- fire)</td>
<td>Mixed severity (+/- fire)</td>
<td>High severity (- fire)</td>
<td>High severity (- fire)</td>
<td>High severity (- fire)</td>
</tr>
<tr>
<td>Pattern of values</td>
<td>Dispersed (large trees)</td>
<td>Dispersed and prevalent (low density WUI, T&E)</td>
<td>One clump</td>
<td>Clumpy</td>
<td>Any</td>
<td>Low or none</td>
</tr>
<tr>
<td>Treatment Strategy</td>
<td>Create large contiguous areas of low hazard (minimum treatment for maximum area)</td>
<td>Strategic (SPLATs/SPOTs)</td>
<td>Localized protection (targeted treatments)</td>
<td>Localized protection (targeted treatments)</td>
<td>Restore natural fire barriers</td>
<td>Defensible fuel breaks along roads and other barriers</td>
</tr>
<tr>
<td>Treatment system</td>
<td>Low hazard fire containers</td>
<td>Treatment optimization model (FlamMap; TOM)</td>
<td>Defensible fuel breaks</td>
<td>Defensible fuel breaks</td>
<td>Strategic restoration</td>
<td>High hazard fire containers</td>
</tr>
<tr>
<td>Spatial treatment pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>