Suomi National Polar-orbiting Partnership

VIIRS Active Fire Product: Current Status and Developments

¹NOAA/NESDIS Center for Satellite Applications and Research, College Park, MD ²University of Maryland, College Park, MD **Presenting*

11/8/2012

- Suomi NPP and VIIRS AF
- Early Cal-Val
- AF product goes Beta
- PGRR
- What's next

VIIRS review

- Launched last fall. Now sits 824 km above Earth's surface.
- Post launch checkout...some minor delays
 - Svalbard
 - Degradation visible and NIR (M7) radiances
- Thermal doors opened January 18th and first fire detection images produced the following day

VIIRS review

- VIIRS represents continuity with NASA EOS MODIS, NOAA AVHRR, and DMSP OLS missions (also international missions such as ATSR)
- AF product includes location (lat/lon) of fire pixels
 - The algorithm is a hybrid <u>thresholding and contextual</u> algorithm
 - Uses radiometric signals from 4m and 11m bands (M13 and M15, respectively).
 - Uses additional bands and a suite of tests for <u>internal cloud mask</u> and the rejection of <u>false alarms</u>.
 - Current IDPS product is based on the MODIS Collection 4
 - No spatially explicit fire/clear land/cloud/water mask

VIIRS Heritage: MODIS and AVHRR

VIIRS			MODIS Equivalent			AVHRR-3 Equivalent			OLS Equivalent		
Band	Range (um)	HSR (m)	Band	Range	HSR	Band	Range	HSR	Band	Range	HSR
DNB	0.500 - 0.900								HRD PMT	0.580 - 0.910 0.510 - 0.860	550 2700
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000						
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000						
M3	0.478 - 0.498	750	3 10	0.459 - 0.479 0 483 - 0 493	500 1000						
		750	4	0.405 - 0.405	500						
M4 0.545 -	0.545 - 0.565		12	0.546 - 0.556	1000						
l1	0.600 - 0.680	375	1	0.620 - 0.670	250	1	0.572 - 0.703	1100			
M5	M5 0.662 - 0.682	750	13	0.662 - 0.672	1000	1	0 572 - 0 703	1100			
IVIJ		750	14	0.673 - 0.683	1000	'	0.372-0.703				
M6	0.739 - 0.754	750	15	0.743 - 0.753	1000						
12	0.846 - 0.885	375	2	0.841 - 0.876	250	2	0.720 - 1.000	1100			
M7	0.846 - 0.885	750	16	0.862 - 0.877	1000	2	0.720 - 1.000	1100			
M8	1.230 - 1.250	750	5	SAME	500						
M9	1.371 - 1.386	750	26	1.360 - 1.390	1000						
13	1.580 - 1.640	375	6	1.628 - 1.652	500						
M10	1.580 - 1.640	750	6	1.628 - 1.652	500	3a	SAME	1100			
M11	2.225 - 2.275	750	7	2.105 - 2.155	500						
14	3.550 - 3.930	375	20	3.660 - 3.840	1000	3h	SAME	1100			
M12	3 660 - 3 840	750	20	SAME	1000	3b	3.550 - 3.930	1100			
			21	3.929 - 3.989	1000						
M13	3.973 - 4.128	750	22	3.929 - 3.989	1000						
			23	4.020 - 4.080	1000						
M14	8 400 - 8 700	750	29	SAME	1000				-		
M15	10.263 - 11.263	750	31	10.780 - 11.280	1000	4	<u> 10.300 - 11.300</u>	1100			
15	10.500 - 12.400	375	31 32	10.780 - 11.280 11.770 - 12.270	1000 1000	4 5	10.300 - 11.300 11.500 - 12.500	1100 1100	HRD	10.300 - 12.900	550
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000	5	11.500 - 12.500	<u>1100</u>			

I. Csiszar (NOAA), W. Schroeder, L. Giglio, E. Ellicott and C. Justice (UMD)

Cal/Val

Four Phases of Cal/Val:

- Pre-Launch; all time prior to launch Algorithm verification, sensor testing, and validation preparation
- Early Orbit Check-out (first 30-90 days) System Calibration & Characterization
- Intensive Cal/Val (ICV); extending to approximately
 24 months post-launch xDR Validation
- Long-Term Monitoring (LTM); through life of sensors

Cal/Val

AF Evaluation

- No sufficient reference data are available to determine commission and omission errors
- Current quantitative evaluation is based on correlative analysis with Aqua MODIS
- MODIS performance is well characterized using moderate resolution (Landsat-class) reference data

- Aqua and NPP have similar overpass times (1:30pm)
 - Sampling of the diurnal fire cycle is similar
- Saturation levels of the primary bands allow <u>unsaturated</u> <u>radiance measurements</u> for most fires
 - Bands 21/22 for MODIS and M13 for VIIRS
- Processing <u>algorithms are compatible</u>
 - Current VIIRS algorithm is based on MODIS (C4)
 - Differences can be resolved and the impact can be minimized
- Primary driver of differences is <u>spatial sampling</u>
 - Pixel size
 - Variations along scanline (aggregation schemes)
 - Variations within pixels (line-spread function, aggregation)
 - Differences in swath width (VIIRS has no gaps at low latitudes)

90% probability of detection; boreal forest; nadir view

Some differences in **spectral placement**

Spectral response curves for MODIS channels 21-23, and VIIRS chanel M13

AF Evaluation

24/7 script for data visualization

- Designed for qualitative assessment of fire data
- Used to identify major anomalies in data

VIIRS x Aqua/MODIS intercomparison

- Qualitative assessment of VIIRS using near-coincident Aqua/MODIS data
- Verify active fire product consistency on a per-pixel and/or grid basis

Detailed data inspection tool

- Used to assess quality of individual bands and the corresponding QA flags
- Collection and analysis of in-situ and airborne data
 - Explicit validation

M13 SDR feedback

• Aggregation, low/high gain

Product Anomalies (DRs)

Anomalies identified include:

M13 aggregation

Spurious fire pixels coinciding with the terminator.

- Corrupted M13 BT values (>450K) and corresponding spurious fire detections along single scans.
- Alternating omission of fire pixels between successive scans.

11/8/2012

M13 aggregation anomaly

Spurious detections

Spurious fires along the terminator

Spurious detections

Spurious fires due to M13 data anomalies

Spurious detections

AF product goes Beta

NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS

VIIRS ARP Release, Beta Data Quality Last Updated: 10/22/2012 Read-me for Data Users

The Joint Polar Satellite System (JPSS) Algorithm Engineering Review Board approved the release of the Visible Infrared Imager Radiometer Suite (VIIRS) Active Fires Application Related Product (ARP) to the **public with a Beta level quality as of 03 May 2012**. Beta quality is defined as:

- Early release product
- Initial calibration applied
- Minimally validated and may still contain significant errors (additional changes are expected)
- Available to allow users to gain familiarity with data formats and parameters
- Product is not appropriate as the basis for quantitative scientific publications, studies and applications

Tutorial for ordering Suomi NPP data in CLASS:

A tutorial for ordering data through CLASS can be found at Data Access. The tutorial references Suomi NPP data but is applicable to all data types. If you have any questions please email CLASS Help Desk.

Tactical Fire Remote Sensing Advisory Committee Fall Meeting

ETADATA

»GO

NOAA

- Significance: The VIIRS Active Fire product is critical for disaster and resource management.
- Product is expected to be used by real-time resource and disaster management; air quality monitoring; ecosystem monitoring; climate studies etc.
- The JPSS PGRR program's primary objective is to maximize the benefits and performance of SNPP data, algorithms, and products for downstream operational and research users (gateways to the public)

- The goals of VIIRS AF data proving ground project is the development of a near-real-time enhanced VIIRS AF product delivery system to NOAA end users.
- To be demonstrated –
- VIIRS active fire algorithm improvement and evaluation
- Near real-time data visualization and evaluation
- Ivan Csiszar NOAA/NESDIS/STAR
- Evan Ellicott, Louis Giglio, Krishna Vadrevu, Christopher O. Justice Geographical Sciences, UMD
- Wilfrid Schroeder CICS, UMD
- Brad Quayle RSAC
- Peter Roohr NOAA NWS Office of Science and Technology

- The system is also a testbed for evaluating enhanced and experimental algorithms
- Background information and VIIRS-MODIS comparisons are also included to help product evaluation

		About	FAQ	Download	Contact Us	
ctive Fire Team		VIIRS	5 fire dete	ctions		
	The Visible In	Links JPSS VIIRS University of Maryland NOAA				
Ivan Csiszar	Suomi Nation					
Wilfrid Schroeder	January 18th					
Louis Giglio	data were b					
Evan Ellicott	van Ellicott quicklooks presented here highlight recent fire detections superimposed on corrected reflectance RGB images (bands 5-4-3). VIIRS data are still preliminary and will continue the lustice					
Chris Justica						
chins Justice	to undergo t					
	Rocky Mou Numerous fi including the	ntain fires: June 20 rires are burning acr Waldo Canyon fire	Sth, 2012 oss the Mountain e in Colorado near	States of the U.S., the center of this		AND

http://viirsfire.geog.umd.edu

Screen shot of the data delivery interface on the VIIRS Active Fire website

11/8/2012

Timestamp▲▼	Date▲▼	Ascii	TIFF	кмz
NPP_VIIRS_20121107_212542_213122	2012-11-07	Download	Download	Download
NPP_VIIRS_20121107_162406_162947	2012-11-07	Download	Download	Download
NPP_VIIRS_20121107_180050_180631	2012-11-07	Download	Download	Download
NPP_VIIRS_20121107_194316_194856	2012-11-07	Download	Download	Download
NPP_VIIRS_20121107_194858_195438	2012-11-07	Download	Download	Download
NPP_VIIRS_20121107_193734_194315	2012-11-07	Download	Download	Download
NPP_VIIRS_20121107_180632_181212	2012-11-07	Download	Download	Download
NPP_VIIRS_20121106_214853_215432	2012-11-06	Download	Download	Download
NPP_VIIRS_20121106_164137_164717	2012-11-06	Download	Download	Download
NPP_VIIRS_20121106_182402_182943	2012-11-06	Download	Download	Download
NPP_VIIRS_20121106_214312_214852	2012-11-06	Download	Download	Download
NPP_VIIRS_20121106_200046_200627	2012-11-06	Download	Download	Download
NPP_VIIRS_20121106_200628_201208	2012-11-06	Download	Download	Download
NPP_VIIRS_20121106_181821_182401	2012-11-06	Download	Download	Download
NPP_VIIRS_20121105_220622_221202	2012-11-05	Download	Download	Download
NPP_VIIRS_20121105_220042_220621	2012-11-05	Download	Download	Download
NPP_VIIRS_20121105_201816_202357	2012-11-05	Download	Download	Download
NPP_VIIRS_20121105_202358_202938	2012-11-05	Download	Download	Download
NPP_VIIRS_20121105_184132_184713	2012-11-05	Download	Download	Download
	0010 11 05		Description	Description

11/8/2012

NDD VITOC

26

County Line

11/8/2012

30

Whitewater-Baldy

Aqua MODIS 5/25/12 20:30 UTC

Western U.S.

The larger fires in California observed in the images include the Fort Complex, Bagley, North Pass, Chips, and Rush. In Oregon, the Waterfalls 2 fire can be seen near the top-left portion of the image. And to the east, in Idaho, the Trinity Ridge and Halstead fires can easily be seen.

Idaho

Wesley, Sheep, McGuire, Porcupine, Mustang, Halstead and Trinity Ridge.

I-band

Little Bear - 6/9/12 20:15UTC

6/9/12 20:15UTC VIIRS I-band (375m) 6/10/12 20:00UT(VIIRS I-band (375m)

I-band

High Park - 6/9/12 20:15UTC

6/9/12 20:15UTC VIIRS M-band (750m)

- Legacy of the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS)
- The DNB is a broad band channel in the VIS and NIR spectral range.
- It operates with three different gains to optimize the sensitivity independent of illumination.
- Attention needed More susceptible to false alarms precisely when MWIR-based algorithms are least likely to produce false alarms.

Looking Forward

- The VIIRS "C6" code, a VIIRS-adapted version of the current MODIS Collection 6 (C6) algorithm, has been delivered to NASA's Direct Readout Laboratory (DRL).
- Over the next few weeks the DRL will test the new code and deliver the package to its alpha-testers, including the US Forest Service Remote Sensing Applications Center (RSAC). VIIRS active fire detections, as well as new products such as fire mask and fire radiative power (FRP), could be available to end-users within several weeks.

Looking Forward

L1/EDR:

 "NOAA has endorsed the inclusion of an Active Fires EDR based on strong community interest in providing continuity of validated MODIS-based fire products (geolocation of fire detections, FRP, and a full fire mask) consistent with the recommendations of the NOAA-NASA Land Science Team."