

#### A Large Integrated Multiagency Fire Study **Project Leads** Roger Ottmar & Sim Larkin, USFS, Seattle, WA Tim Brown, DRI, Reno, NV; Nancy French, MTU, Ann Arbor , MI Adam Watts, DRI; Susan Prichard, U Washington, Seattle

















## Outline

- FASMEE Overview
- FASMEE Process and Phase 1 Activities and Status
- FASMEE burns: timing, locations, and logistics
- Coordination with NOAA & NASA



#### **Science Question and Goal**

How do fuels, fire behavior, fire energy, and meteorology combine spatially and Joint Fire Science Program: "Research in response to the emerging needs of policymakers and fire managers"

at the burn-unit scale to determine the dynamics of near-source plumes and the long-range transport of smoke and its chemical evolution?

To use <u>innovative</u> and <u>efficient</u> measurement techniques to collect critical observational data necessary to evaluate and advance operationally used fire and <u>smoke modeling</u> systems and the underlying scientific models and framework.





## **FASMEE Overview**

#### • Large field campaign

- >500 acre prescribed burns
- Intensively instrumented
  - 120 + scientists & technicians
  - 20 + government agencies and Universities
- High end of fuel load and intensity
- Study sites in the
  - Southwest US
  - Southeast US
- Interrelated disciplines
  - Fuels and consumption
  - Fire behavior and energy
  - Plume development and meteorology
  - Smoke emissions and chemistry
  - Modeling
- Core set of targeted measurements
  - Designed by discipline and modeling leads
  - Fuel and fire characterized to support plume and smoke measurements
- Integrating with FIREX (NOAA), FIREChem (NASA), and EPA
- Opportunity for additional measurements and agency partnerships to further the impact of the effort (i.e. ECOFASMEE)



## **FASMEE** Targeted modeling areas

**Important to FASMEE Goal:** 

- Coupled fire-atmosphere behavior
- Fuel consumption and emissions
- Fire growth/progression
- Fire energy and plume development
- Smoke chemistry & transport
- Smoke impacts/air pollution

Not a part of FASMEE (but could benefit from FASMEE):

- Fine-scale fire behavior modeling
- Fire effects
- Fire ecology
- Fire behavior management



#### Key model improvements and evaluation



Fire and Smoke Model Evaluation Experiment



Phases

PHASE 2: FIELD CAMPAIGN

#### Phase 1 Science Team

#### Fire and Smoke Model Evaluation Experiment

| Modeling Lead(s) –<br>WRF-SFIRE/WRF-<br>SFIRE-CHEM           | A. Kochanski, U of UT (PI)<br>A. Fournier, CU (co-I); M.A. Jenki<br>(co-I)                                                            | <b>ns</b> , York U / U of UT (c  | o-I); J. Mandel, U of CO                     | The second                                               |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------------------|
| Modeling Lead(s) –<br>WFDS/FIRETEC                           | W. Mell, USFS PNW (PI)<br>R.R. Linn, LANL (co-I)                                                                                      |                                  |                                              | http://fasmee.ne                                         |
| Modeling Lead(s) –<br>CMAQ / El / EPA<br>regulatory modeling | K.R. Baker, EPA (PI)<br>B.K. Gullet, EPA (co-l); T.E. Kleind<br>Pouliot, EPA (co-l); M.S. Landis, E<br>(co-l); A.F. Vette, EPA (co-l) | terror to a second second second | and a second second second second second     |                                                          |
| Modeling Lead(s) –<br>Prescribed fire /<br>southeastern      | Y. Liu, USFS RMRS (PI)<br>G. Achtemeir, USFS (emeritus, co-<br>USFS RMRS (co-I)                                                       | -I); <b>T. Oddman</b> , U of G   | A (co-l); S. Goodrick,                       |                                                          |
| modeling                                                     |                                                                                                                                       | Fuels Discipline                 | A. Hudak, USFS RMRS<br>R.E. Keane, USFS RMRS | (PI)<br>S (co-I): E.L. Loudermilk, USFS SRS (co-I): R.A. |

#### Leadership Team: Roger Ottmar, USFS Sim Larkin, USFS Tim Brown, DRI Nancy French, MTU Adam Watts, DRI Susan Prichard, UW

| Fuels Discipline   | A. Hudak, USFS RMRS (PI)                                                      |  |  |  |
|--------------------|-------------------------------------------------------------------------------|--|--|--|
| Lead(s)            | R.E. Keane, USFS RMRS (co-l); E.L. Loudermilk, USFS SRS (co-l); R.A.          |  |  |  |
|                    | Parsons, USFS RMRS (co-l); S.J. Pritchard, UW (co-l); C.A. Seielstad, U of MT |  |  |  |
|                    | (co-l); N.S. Skowronski, USFS NRS (co-l)                                      |  |  |  |
| Fire Behavior      | M. Dickinson, USFS NRS (PI)                                                   |  |  |  |
| Discipline Lead(s) | B.W. Butler, USFS RMRS (co-l); W.M. Hao, USFS RMRS (co-l); J.J. O'Brien,      |  |  |  |
|                    | USFS RMRS (co-l); W. Schroeder, UMd (co-l)                                    |  |  |  |
| Meteorology and    | B. Potter, USFS PNW (PI)                                                      |  |  |  |
| Plume Dynamics     | C. Clements, SJSU (co-I)                                                      |  |  |  |
| Discipline Lead(s) |                                                                               |  |  |  |
| Smoke Emissions    | S.P. Urbanksi, USFS RMRS (PI)                                                 |  |  |  |
| and Chemistry      |                                                                               |  |  |  |
| Discipline Lead    |                                                                               |  |  |  |

Fire and Smoke Model Evaluation Experiment



**Phases** 

Fire and Smoke Model Evaluation Experiment

#### Phase 1

- Choose Science Team Leads (done)
- Scope out and write FASMEE Observational Study Plan
  - Discuss FASMEE focus/foci & how to attain goals (done)
  - Visit & choose sites (done)
  - Write draft & final plan documents & other documentation
- Funding Opportunity Notice (JFSP) released for proposal application
- Choose FASMEE Phase 2 projects & team members (who will be planning, collecting, analyzing, writing up, organizing data, etc.)
   <u>Phase 2 (if funded)</u>

Process

- Finalize Study Plan
- Do the FASMEE burns & science
- Distill and archive data sets

### **FASMEE** Phase 1 Activities

- **Site Reviews and Selection**
- Two site visits
  - North Carolina/Georgia
  - Utah/Arizona



- Coordination with hosting agencies and personnel
- Specific site selection for development of measurement plans & feasibility
- **Coordination with JFSP Board of Directors**
- Understand expectations (2-way)
- Set general guidance (Board  $\rightarrow$  Science Team)
- Provide ideas on scope (Science Team → Board)

#### **Phase 1 Activities**

**Study Plan Development** 

- Background and context
- Modeling needs



PHASE 2: FIELD CAMPAIGN

- How will models use the data collected in FASMEE Phase 2?
- <u>Recommended measurements and justification</u> What each measurement is for:
  - How it connects to model issues
  - Why this quantity/spatial & temp resolution is optimal
- Use of observational data to address science questions and model needs
  - for model improvement/development
  - to address the science questions
- Logistics and Specialized sub-plans

#### **Phase 1 Activities**

**Modeling & simulations** 

- Provide help in defining measurement specifications
- Help demonstrate need for measurement (justification)
- Explore value of new measurements in model improvement (including benchmarking)



### **FASMEE** Site Hosts (DoD, USFS, NPS)

- Receptive to research
- Cooperation
- Coordination
- Logistical support
- Planned burn units that meet
  FASMEE requirements
- Incident Action Plan
- Budget for host agency



## **Site Selection**

- FASMEE research areas
  - Southwestern US
    - Mixed conifer/dry ponderosa fuel load (20-150 t/a)
    - Stand replacement/higher intensity fires
    - September/October-2018, May/June-2019
  - Southeastern US
    - Long-leaf pine plantation, 3-5 year rough (20+ t/a)
    - February–April 2020-2021
- Hosts

Southwest

- Fishlake/Dixie National Forest (mixed conifer/aspen)
- Kaibab National Forest and Grand Canyon (Ponderosa pine or mixed conifer)

Southeast

- Fort Stewart (southern pine)
- Savannah River Site (alternate)









## **Fort Stewart**





#### 1 – Year Rough

5 – Year Rough

Main Manning Creek unit could be burned as a free running fire lit at the bottom, 1000 acres+



Burning these two areas in spring 2017 to prep larger unit for free running fire in fall of 2018. Potential (TBD) small "knob units" for pilot burns

Flat







## **FASMEE** Challenges

- Spatially and temporally resolved measurements
  - Fire position/evolution
  - Quantitative fire radiation (need dual-band capability for airborne measurements)
  - Quantitative fire convection (inferred and/or measured)
  - Higher spatial and temporal resolution than before
  - Nighttime smoke and heat?
- Aerial data collection/UAS
  - Airborne data is a necessary component of most disciplines
  - UAS expected to be involved at all sites to varying degrees
  - Focus on mature, deployable/operational platforms & payloads to support data needs (not a UAS development niche)
  - Coordination of airspace is an important consideration
- Matt Dickinson & Wilfrid Schroeder presented at the last TFRSAC on the use of airborne and spaceborne fire radiation measurements for fire and smoke modeling.



# Example of how simulations can help measurement design

Assessing the expected plume height with WRF-SFIRE



Adam Kochanski (U. Utah)

# Example of how simulations can help measurement design

Assessing most optimal horizontal placement of the sensors based on ensemble variance



More ensemble variance => more constraints on the model -> more improvement.

Adam Kochanski (U. Utah)

#### **Coordination with FIREX & FireChem**

#### FIREX:

- NOAA sponsored 5 year experiment
- NOAA and external scientists
- Major sources of funding:
  - NOAA CSD (int), NOAA AC4 (ext)
  - Total budget: ~\$24M
- Multiple phases
  - 2016 Fire lab burn chamber studies
  - 2017 Storm Peak lab measurements
  - 2018 Western wildfire field campaign focused on aircraft measurements
    - P3 Orion + other aircraft

#### FireChem:

- 2017 NASA Tropospheric Chemistry RFP
- Includes support for FIREX, FASMEE
- NASA DC8 Aircraft reserved for 2018

Fire Influence on Regional and Global Environments Experiment' (FIREX)

The Impact of Biomass Burning on Climate and Air Quality: An Intensive Study of Western North America Fires





#### FIREChem

A cooperative wildfire air quality field study designed to complement FASMEE and FIREX

#### **FASMEE Burn Timeline Options**





#### Unique Benefits of FASMEE with FIREX and FireChem

- Characterize fuels, fire, and plume dynamics to relate to smoke, chemistry and transport
- Discipline leads and modelers draft Measurement Specifications Document
- Target burns representing southwest and southeastern fuel bed complexes
- Captures a range of fire intensity and duration typical of fires managed by land managers including burns that closely represent wildfire
- Burn windows will range across winter, spring and fall
- Exemplar of collaborative federal fire science



## **Questions and Discussion**