From Marine Pollution to Inland Wildfire Mapping

The Mobilization of the National Aerial Surveillance Program (NASP) in support of the Fort McMurray Wildfires

Louis Armstrong
TC Chief, Intelligence, Surveillance and Reconnaissance

Kim Pearce
Expert Technologist, MART Pacific

Josh Johnston
Forest Fire Research Scientist, Canadian Forest Service

Tim Lynham
Forest Fire Research Project Leader, Canadian Forest Service
Overview

• What is the NASP?
• Capabilities of the NASP
• Support of Fort McMurray Wildfires
• R&D and Potential application
National Aerial Surveillance Program

- Coast Guard pollution patrols commenced over the Great Lakes in 1968.
- Coast Guard expanded aerial surveillance operations in 1991 to cover Atlantic and Pacific coasts, thus creating the NASP.
- In 2003, the NASP moved to Transport Canada.
- In 2005, acquired remote sensor suite.
- The NASP is Transport Canada’s primary method for detecting illegal discharges at sea.
- Current partnership between TC Marine Safety and Security, TC ASD and Environment Canada (EC) Marine Aerial Reconnaissance Team (MART) allows for multitasking and shared costs.
Marine Aerial Reconnaissance Team (MART)

• Group of Environment and Climate Change Canada – Canadian Ice Service employees who conduct the mission planning and execution on board TC NASP aircraft
• Created 2006 when the MSS-6000 was installed on the first Dash8
• MART role: observe, analyze, record and report primarily maritime, but also land-based phenomena, from an aerial platform.
Why does TC Conduct Surveillance?

- Accidental or intentional discharges of oil
- Increase in AIS traffic
- The prevention of oiled wildlife
- Identification of vessels in marine protected areas
- Our department’s role in maritime security
- Ensure public confidence in Canada’s Transportation System
Program Resources

3 TC Aircraft
 • 3 teams that cover Canada’s 3 Oceans
 • ~40 People across Canada

+ Private Industry contract aircraft
 • Provincial Airlines (PAL)
 • Surveillance in Newfoundland and Labrador
NASP Activities

- Search & Rescue / Search & Assist
- Detection of Illegal Discharges
- Emergency Response
- Ice Reconnaissance
- Marine Security
- Fisheries Patrol
- Science
- Participation In Exercises
- Air Quality Monitoring
- Wildlife Monitoring

NATIONAL AERIAL SURVEILLANCE PROGRAM
Marine and land-based SAR support as secondary resource

Search for downed aircraft in northern Quebec 2015

Search for downed Russian helicopter in Davis Strait 2015. Provided ice data to response vessels.
Ice Reconnaissance
Support During Emergency Response Situations

May include events such as:

- Public Safety
- Ships stuck in ice
- Marine Casualties
- Floods
- Support to OGDs
- Response to Pollution Incidents
- Wildfires

The MX-15 camera and the live streaming video were vital with this operation.
Marine Security

Migrant Vessels

Verifying that vessels inbound to Canada appear on an approved list

Identifying suspicious vessels
The Integrated Satellite Tracking of Pollution (ISTOP) Program

Category 1A

ISTOP detected an anomaly originating from the Hibernia platform

306 litre spill confirmed by the aircraft the next day.
Arctic Fisheries and Wildlife Monitoring
Marine Mammal Surveys

Whale Researches on board conducting transects to determine populations and

- Red = fin whale
- Orange = large unidentified whale or like fin whale or unidentified baleen whale
- Yellow = humpback
- Blue stars = blue whale
 - Smaller yellow star = baird’s beaked whale
- Purple = sperm whale
- Grey = Risso’s dolphin, pacific white sided dolphin, northern right whale dolphin and all other dolphin/porpoise
- Black = killer whale
- Lime green = grey whale
- White = Cuvier’s beaked whale
MSS-6000 and MX-15

Capabilities of the NASP with the Surveillance System
NASP Surveillance System Components

- SLAR
- AIS
- SATCOM
- EO/IR
- IR/UV
- Cameras
Digital Still & Video Camera Systems

GPS Annotated Data:

- Mission #: TC951_2010_086
- Date: 2011-03-23
- Time: 16:41:25
- Latitude: N44°15.05
- Longitude: W123°29.49
- Altitude: 1489 ft
- Speed: 202.0 kts
- Image #: 0026
Images for Wildfire support
Wildfire Support – Damage Assessment
Electro Optical Infrared (EO/IR)

WESCAM MX 15 EO/IR – 4 sensors

- **Infrared Camera** w/ high magnification 4 step zoom
- **Colour Daylight Camera** with continuous Zoom Lens (EOW)
- **Dual Channel Spotter Lens** – Fixed focal length (Daylight Camera & Low Light Camera) (EON)
- **Laser illuminated Night Spotter** (Illuminates the target in total darkness)
Primary use: Identification and analysis of targets from far away.

Secondary use: To document (stored frames or video clips) targets for the records, both day and night, & during conditions of reduced visibility.

Covert Operation: Positive subject identification (ship names) in total darkness

Images from this system can be live streamed, recorded and still images taken
Tasking to Support Wood Buffalo Wildfire
Live Streaming Video

- See what crew see while they are overhead
- Available to select TC and OGD staff
- Not secure
- Stream only when required as it is expensive
- Requires small software package to be installed on computer or ipad
IR/UV Line Scanner

- Detects oil on surface. (IR) - thicker sections (UV) - extent of oil spill
- Data are georeferenced
- Used to map spatial extent of oil spills and get area of coverage
- Draw polygon around the oil
- Assists in determining where are the heaviest concentrations of oil
NASP IR imagery – Night time fire mapping
Microwave energy is reflected by microscopic waves on the ocean surface when enough wind is present. The lack of wind and these “capillary waves” prevents backscatter from returning to the SLAR antennas, thus creating a darker appearance on the display.

Swath width with visual surveillance (Naked Eye)
- 4 nm (2 nm each side)

Swath width using SLAR
- 90 nm (45 nm each side) – vessels
- 30 nm (15 nm each side) – oil detection
- 80 nm (40 nm each side) – strip map ice

Increases effectiveness by expanding window of opportunity for Surveillance. Can be used during conditions of reduced visibility.
SLAR target - Outbound tanker

SLAR anomaly/oil slick
Wood Buffalo Fire Support – Day 1

• Vancouver to Edmonton – picked up Dr. Josh Johnston (Forest Fire Research Scientist, Natural Resources Canada)

• Conducted early evening overflight (daylight) – gathered video, still images and some IR legs converted to GEOTIFFs
Wood Buffalo Fire Support – Day 2

- Conducted early evening overflight of Fort McMurray for IR scanning (daylight)
- Gathered video, still images and IR data converted to GEOTIFFs.
- Procedures needed to be refined to enhance data and also image resolution needed to be addressed.
Wood Buffalo Fire Support – Day 3

Tasking Received
Tasking results

Hot spot mapping

IR Line scans
Hotspot map made in-flight
Wood Buffalo Fire Support – Day 4-5 Tasking
Raw, unprocessed IR imagery
How does NASP get here?

Pollock Pines, CA. Grayscale Phoenix Imagery King Fire Run #5 18 September 2014 @ 0118 MDT. Phoenix imagery is acquired as Black = Hot. Pixels tagged as red indicate those areas that exceed the fire detection algorithm threshold.

http://nirops.fs.fed.us/pages/imagery
Process imagery
Processed imagery
Fire Progression Mapping
Fire Progression Mapping

May 12, 18:47

May 12, 19:56

~ 12 m/min
Integrate Emerging Science
Fire mapping
- Process, orthorectify and mask raw imagery
- Determine and run cell classification
- Build maps of active fire burning
- Provide products useable to command centre and responders in a timely fashion.

Hot Spot mapping
- Georeference hot spots
- Associate spots to images
- Create maps and image catalogue / database for easy reference by command or responders
What we have – what we need

Have:
• Deployable aircraft with crew
• IR/UV linescanner
• EO/IR camera

Can get raw remote sensed data

Need to:
• Gauge stakeholders (clients) interest
• What can we do above and beyond private industry
• R&D to process files and streamline for operational use
• Need to develop SOPs and training for operators in data acquisition and processing
Future Initiatives

If this resource is of interest for wildfire support:

• Seek funding for R&D
• Possibly upgrade equipment (MX-15 and/or linescanner)
Thank You

Louis Armstrong
Transport Canada Chief, Intelligence, Surveillance and Reconnaissance
louis.armstrong@tc.gc.ca
Cell: (613) 290-0176
Kim Pearce MSc.
Expert Technologist, Marine Aerial Reconnaissance Team (MART)
Environment and Climate Change Canada
kim.pearce@canada.ca
Office: (604) 666-3927 Cell: (604) 787-2046

Joshua M. Johnston, PhD
Forest Fire Research Scientist, Natural Resources Canada
Canadian Forest Service, Great Lakes Forestry Centre
Office: (705) 541-5548
Joshua.Johnston@canada.ca
National Aerial Surveillance Program

Protecting Our Waters

Programme national de surveillance aérienne

Protéger nos eaux
Mission Planning for Wildfire - IR/UV Scanner

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Swath</th>
<th>Pixel Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500ft</td>
<td>~ 750 m</td>
<td>3 x 3 m</td>
</tr>
<tr>
<td>8000ft</td>
<td>~ 4 km</td>
<td>14 x 14 m</td>
</tr>
<tr>
<td>20000ft</td>
<td>~10 km</td>
<td>~ 35 x 35 m</td>
</tr>
</tbody>
</table>