A Modular Multispectral Scanner System for UAV Applications Jeff Myers, Dr. Ted Hildum University of California – Santa Cruz NASA Ames Research Center

The UAS Autonomous Modular Sensor (AMS) a development platform for airborne sensor web technologies

- Multiple spectral configurations
- Onboard Level-2 product generation
- Embedded precision navigation system
- Real-time data telemetry interface
- Hardware development funding from the NASA HQ Airborne Science Program

The WSFM Real-time Data Environment

AMS Sensor Pod on Ikhana

A New Modular Sensor System for UAV Operations with Three Configurations

- Wild Fire Sensor
- Atmospheric Mapping Sensor
- Ocean Color Imager
- Shared Scanning Optics and Data Modules
- Compatible with Predator-B, Global Hawk, etc.

Wild Fire Research (TMS example) Airborne Sensor Facility Ames Research Center

Ocean Color / Coral Reef Research (AOCI example)

Hurricane and Atmospheric Studies (MAMS example)

UAV AMS Sensor Features

- Pressurized Electronics Packaging
- 16-bit Digitizer w/ Auxiliary CPU
- Customized Daedalus AADS-1268 Spectrometer
- Sterling & TE-Cooled IR Detectors
- New Scanning Optics Module
- Solid State Storage Media
- Multi-Platform Compatibility (UAV, Manned)
- Long-Duration Autonomous Operation

Common Opto-Mechanical Module

(Interfaces to the Wildfire, OCI, or AMS Spectrometers)

Scan Mirror Fabrication

New Scan Mirror Assembly

(Includes motor, elliptical scan mirror, shroud, and shaft position encoder)

Digitizer and Data System (Pressure Housing Removed. Card Cages Not Fully Populated)

UAV Sensor Data System with Pressure Housings and Scan Motor Controller

UAS Science Mission Computer

- A Universal Payload Interface to High-Bandwidth Telemetry Systems
- Inputs for >20 instruments; Up To 40 Mbs Throughput
- Fast CPU & Solid State Storage For Experimenter Data & Algorithms
- Real-time on-board generation of Level-1 & 2
 geophysical products, Geo-Tiffs and JPG-2000s
- Embedded SRTM Digital Elevation Model of the Western U.S.
- Interface to ground-based IMM/Collaborative
 Decision Environment

• Future stand-alone packaging for Global Hawk

Airborne Science and Technology Lab Ames Research Center

AMS System

Data System

Scanhead - Wildfire Configuration (covers removed)

AMS System Components on Pod Tray

Ames Research Center Airborne Science & Technology Lab

AMS System Weights			
Scan Head Assembly	Wt. (lbs)		
Scan Head	136.4		
Total	136.4		
Ancillary Equipment			
Data System and Enclosure	43.2		
Motor Driver	10.5		
BB Controller	4.4		
Power Distributor	20.24		
Applanix Enclosure	22.44		
Ag132 DGPS Receiver	22.0		
Cabling	7.92		
Heater/blower	1.76		
Total	132.46		
Total AMS System			
Weight	268.86		

UAV Wildfire Mapping Sensor (Utilizes a modified Daedalus AADS-1268 spectrometer)

Band	<u>Wavelength μm</u>		
1	0.42- 0.45		
2	0.45- 0.52	(TM1)	
3	0.52- 0.60	(TM2)	
4	0.60- 0.62		
5	0.63- 0.69	(TM3)	
6	0.69- 0.75		
7	0.76- 0.90	(TM4)	
8	0.91- 1.05		
9	1.55- 1.75	(TM5)	
10	2.08- 2.35	(TM7)	
11	3.60- 3.79	(VIIRS M12)	
12	10.26-11.26	(VIIRS M15)	

Total Field of View: 42.5 or 85.9 degrees (selectable) 1.25 mrad or 2.5mrad (**IFOV:** " Spatial Resolution: 3 – 50 meters (variable)

NASA UAS Ocean Color Imager

- UAS or Conventional Aircraft-Compatible
- Includes SeaWiFS Bands + Thermal IR for SST
- Variable Resolution (2 50 meters, altitude dependent)
- Highly Calibrated
- Successor to NASA Daedalus AOCI

<u>Band</u>	<u>λ nm</u>	$\Delta \lambda nm$
1	412*	20
2	443*	
3	490*	
4	510*	
5	555*	
6	620	
7	670*	
8	770*	60
9	860*	66
10	1024	"
11	11.5μm	4μm

*SeaWiFS Bands

Aircraft Platforms:

Ikhana or Global Hawk UAS, ER-2, WB-57, B200, Cessna Caravan

S.F. Bay Salt Ponds AMS Image (4/06)

The OCI Spectrometer

S.F. Bay AMS 4/06

Thermal IR

AMS Atmospheric Mapping Configuration

<u>Band</u>	<u>Wavelength, μm</u>	
1	0.45 - 0.52	
2	0.52 - 0.60	
3	0.57 - 0.67	
4	0.60 - 0.73	
5	0.65 - 0.83	
6	0.72 - 0.99	
7	0.83 - 1.05	
8	6.54 – 6.90 (MODIS 27)	
9	10.26 – 11.26 (NPOES VIIRS M15)	
10	11.54 – 12.49 (NPOES VIIRS M16)	

Field of View: 85.9 degrees IFOV: 2.5 Spatial Resolution: 50 meters from 19.8 km

AMS H2O Vapor Configuration

Band	<u>Wavelength µm</u>		
1	0.42- 0.45		
2	0.45- 0.52	(TM1)	
3	0.52- 0.60	(TM2)	
4	0.60- 0.62		
5	0.63- 0.69	(TM3)	
6	0.69- 0.75		
7	0.76- 0.90	(TM4)	
8	0.91- 1.05		
9	1.36 - 1.39	(MODIS 26)	
10	1.86 - 1.91	(MAS 15)	
11	6.54 - 6.90	(MODIS 27)	

Total Field of View:85.9 degreesIFOV:2.5mradSpatial Resolution:50 meters (variable)

Representative Imagery: ER-2 MAS Convective System (CAMEX, 9/7/01)

0.65 μm

1.62 μm

1.88 μm

3.75 μm

Airborne Science & Technology Lab Ames Research Center **10.85** μm

Erin Hurricane

Representative Imagery: ER-2 MAMS Data

ASF Calibration Lab

NIST-Traceable Spectral and Radiometric Calibration Services for Airborne Sensors

Currently supporting:

AMS

eMAS and MASTER SSFR (Solar Flux Radiometer) AATS-14 (Sun Photometer) 4-STAR " " CAR, RSP (Radiometers) Field Spectro-Radiometers

Ref. Paper:

Radiometric Validation of NASA ARC Calibration Laboratory, S. Brown, C. Johnson, et al. Applied Optics/Vol.44, No. 30, Oct. 2005

AMS as a Sensor Web Software Development Platform

UAS-AMS Image Data Flow Diagram

(Western States Fire Mission, 8/06)

Airborne Element

CDE Agents

Web Server

Collaborative Decision
Environment (CDE) Host
Intelligent Mission Management SW
Image & Map Server

Ground Computer

- Instrument C&C
- Query Handling
- Instrument Engineering Data
- Vehicle Data
- Product QA/QC

Operational Legacy

Airborne Sensor Facility

- The Scan Head (opto-mechanical sub-system) has flown over 400 flight hours on the ER-2 (as TMS, AOCI, MAMS)
- The AMS system flew 51 NASA missions on the Cessna C-208, Altair and Ikhana Predator UAS, and the ER-2, between April 2006 and Feb 2013.
- AMS sensor development was originally funded by the Suborbital, and later Airborne, Science Programs, initiated by Cheryl Yuhas, PM

The AMS as Test-Bed

The AMS was intended as a test-bed for the development of the hardware subsystems and software architectures required for the future airborne sensor web.

The AMS project has produced the following capabilities:

- 1. A universal payload computer, with high-speed telemetry interfaces
- 2. Real-time onboard science databases, accessible from the ground
- 3. Remote instrument command and control protocols
- 4. Onboard Level-2 product generation using experimenter algorithms
- 5. Interfaces to a global geo-spatial data and decision-making environment, providing raster, vector, and numerical data streams

All of these technologies have been implemented on the Global Hawk/GHOC, as demonstrated on GLOPAC and GRIP (2010)

The Legacy of AMS as an Airborne Systems Development Platform

The AMS subsystem designs later used on the eMAS and MASTER instrument projects:

- 1. LINUX-based flight software used on E-MAS, MASTER
- 2. New Motor-Mirror-Encoder design
- 3. New Motor and BB Controllers
- 4. Real-time interface to POS-AV

Sensor Network Hardware Development

Brought to you by the NASA Earth Science Division: The Airborne and Applied Science Programs, and ESTO AIST