

SkyEye Project Update for TFRSAC

Enric Pastor

ICARUS Research Group

Department of Computer Architecture

Technical University of Catalonia (UPC)
enric@ac.upc.edu

ICARUS Group Presentation

- Technical University of Catalonia
 - 15 schools, 40 departments,
 30.000 students, 2.500
 researchers
- Escola Politècnica
 Superior de Castelldefels
 - 4 degrees: telecomunicacions and aeronautics, 3.000 students, 15 research groups, inside the Parc Mediterrani de la Tecnologia

ICARUS Group Presentation

- ICARUS: Intelligent Communications and Avionics for Robust Unmanned aerial Systems
 - 11 researchers (4 Ph.D.), multidisciplinar group
- Computer Science
 - Web services
 - Embeded systems
 - SIG
 - Formal methods
- Telecomunicacions
 - Wireless communications: WiFi, WiMax, RC, Satellite
 - Hardware design
- Aeronautics
 - Aeronavigation procedures
 - ATM

Our UAS Strategy

- Flexible UAS operation will be possible by:
 - Link flight-plan with payload: global mission concept
 - Having a flexible mission/payload control
 - Mission reconfiguration can be achieved in short time
- Methodology:
 - Exploit information technology concepts and methods
 - Pragmatic view: structure applications rather than using Artificial Intelligence

Sky-Eye development platform

Automation key for productivity

Automation key for productivity

Review of activity

- UAV Platform integration
- Automated support for operations
- IPM: on-board flexible computation
- Small failures

UAV Platform integration

Improved platform integration (weight & vibrations):

UAV Platform integration

• Fully autonomous platform under integration:

Automation of scanning / perimeter analysis:

- Parameter-based flight plan definition.
- Dynamic update capabilities.

```
<leg id="missionleg" xsi:type="BasicScanLeg">
  <course>45</course>
  <speed >150</speed>
  <altitude>4500</altitude>
  <trackseparation > 1000 < /trackseparation >
  <exitcourse>False</exitcourse>
  <entryside>Left</entryside>
  <exitside>Left</exitside>
  <offset>5</offset>
  <PItype>Standard</PItype>
  <PIcourse>45</PIcourse>
  <area>
    <point > 41.9984726 1.9125963 /point >
    <point > 41.9002422 2.2004379 /point >
    <point > 41.8329421 2.5259285 /point >
      <!-- More points may follow -->
  </area>
</leg>
```


• Turn design.

Simulation results.

Technical objectives:

- Employ UAS based missions to verify real-time operability of small surveillance platforms via the use of on-board multicore processor technology (IPM).
- Demonstrate IPM integration feasibility on highly integrated and physically constrained systems.
- Demonstrate the UAS flight-plan / mission management interaction with the IPM architecture to exploit sensor data on-board the UAS.
- Permit high-level of surveillance dynamics and flexibility according to the actual stream of data being sensed.

Strategy:

- Configure multiple levels of surveillance automation and operation phases by exploiting IPM computational reconfiguration and Power/CPU tradeoffs.
- Generate real-time operational commands through UAS mission subsystems and reconfigure IPM according to the mission phase requirements.

Mission:

- In collaboration with CSIC science requirements, design a jellyfish detection, identification and classification system.
- Invasive jellyfish species are appearing in one of the biggest river deltas in Spain. Expected to greatly affect the existing ecosystem.
- Monitor distribution of the population and dynamic evolution along the season. Identify and catalog the specific jellyfish types.
- Two phase surveillance procedure:
 - Medium altitude / high speed overfly of the area for detection of population presence. Real-time analysis based the IPM box.
 - 2. Low altitude / low speed overfly to achieve identification and classification of species.
- Both phases are executed in the same flight. Second phase is executed based on data processed in the first.
- IPM box will provide location of population, identification and distribution maps through web-services directly provided from the helicopter.

Thanks for your attention!

Questions?

