GOES Early Fire Detection System

development and first validation results

Alexander Koltunov, Susan Ustin,

akoltunov@ucdavis.edu

Center for Spatial Technologies and Remote Sensing (CSTARS), University of California, Davis

Brad Quayle, Brian Schwind

USDA Forest Service Remote Sensing Applications Center (RSAC)

GOES-EFD effort: Data/Work Flow and Participants

GOES Early Fire Detection (GOES-EFD) System

Objective:

A low-cost and reliable capacity for systematic rapid detection and initial confirmation of new ignitions at regional level (TBD)

Detect new wildfire incidents consistently within first 1-2 hours after start, preferably before they are reported by conventional sources

Geostationary Satellites: GOES

GOES Imager:

- Viewing geometry fixed
- VIS and TIR images every 15-30 min
- TIR pixel size ~ 6 x 4 km over CA

WF-ABBA* operational algorithm for active fire monitoring

Designed for applications interested in, for example:

- % eventually detected fires
- burned area accuracy
- number of false positive pixels

Optimized well for global scale performance

In contrast,

Early Detection has different priorities:

- Minimize the time to initial detection of an incident
- Minimize the number of false incidents (alarms)

WF-ABBA Principle: Contextual Detection (find pixels that are much hotter than neighbors)

- Good for detecting large/hot fires (sooner or later)
- OK for thermally homogeneous areas (σ is small)
- Less effective on ecosystem boundaries

GOES-EFD principle: Temporal + Contextual (detect anomalous changes in surface properties)

Multitemporal background prediction by Dynamic Detection Model:

Koltunov & Ustin S.L. (2007) Rem Sens Environ

Koltunov, Ben-Dor, & Ustin (2009) Int J of Rem Sens

Automatic Thermal Image Registration

GOES-EFD ver. 0.2: Training and Preprocessing

Preprocessing

Automatic registration

GOES-EFD ver. 0.2: Detection Stage

Event Tracking: from pixels to events

- 1) Do pixels flagged "fire" in this frame form the same fire incident/complex?
- 2) A new incident?

Event == group of fire pixels to be considered a single wildfire incident

- An "existing" event: No action is necessary
 - a re-detected wildfire
 - a re-detected false
- A "new" event: An action may be required
 - a true new ignition, or
 - a false positive

Initial Experiment with fire season 2006 Central California

Detection Period: 40 days; 2852 images: Aug 3 –

Oct 1 at ~20-min time step on

average.

-- Substantial Cloud Cover

Wildfire

Large (>2 ha final size) wildfires;

Incidents* Used:

CA only

Sample #1: 13 fires with known initial report HOUR

Sample #2: 25 fires with known initial report DATE

- California Department of Forestry and Fire Protection (CAL FIRE)
- Geospatial Multi-Agency Coordination (GeoMAC) group
 Include wildfire incident reports from: USFS, BLM, NPS, CAL FIRE, et al.

^{*} Used wildfire incident databases from:

Validation methodology: incidents

Koltunov, Ustin, & Prins (2012)

- 1. Match detections in space and time to official wildfire incident records (including fire initial report/start time and estimated end time)
- 2. Matched incidents == true positives
- 3. Unmatched incidents == a false positive OR un-reported fire

What about unreported/unrecorded incidents?

– check falses against new burns in Landsat

Detection timeliness: cumulative distribution function (c.d.f.)

Performance statistics

Detected incidents	GOES-EFD rapid	GOES-EFD regular	GOES-EFD @30min	WFABBA @30min	
for 13 fires with recorded report hour					
Detected in < 1 hour Detected before reported Total latency reduction	11/13 4/13 216 Min	10/13 4/13 142 min	10/13 3/13 105 min	7/13 2/13 45 min	
for 25 fires with recorded report date					
Detected in < 12 hours	16/25	15/25	15/25	11/25	
False/non-wildfire incidents	up to 784	up to 79	38 to 53	39 to 55	

GOES-EFD detects fires earlier than WF-ABBA

Example

Marysville-Dobbins Fire: near Marysville, CA reported @1:05 pm Aug 16, 2006

GOES-EFD first detection – in 12:10 pm image

Summary

- Initial, proof-of-concept version ready (optimizations under way)
- GOES-EFD will complement WF-ABBA global monitoring capabilities at regional level:

GOES Early Fire Detection algorithm	WF-ABBA algorithm		
Optimized for Regional Scale Surveillance	Optimized for Global Scale Surveillance		
Best for Detecting New Ignitions ASAP	Best for Consistently Monitoring Active Fires		

Next steps:

- Development-test iterations
- Work with end-users partners to ensure sustained and informed use
- Validate extensively
- Deploy

Future Development Activities (not currently funded)

- UC-Davis/RSAC team proposed to 2011 ROSES Applied Science (1-year Stage 1 "Feasibility") toward potential 3 more years of combined funding (NASA + USFS)
- Involve First Responders in the application design and tests ASAP:
 - How to best use ignition-candidates from GOES-EFD?
 - How to best combine GOES-EFD product with conventional wildfire identification means?
- Application Development:
 - Massive-scale algorithm optimizations and routine annual retrospective validations
 - Developing a stable real-time GOES GVAR data acquisition block (can NEX/RSAC facilitate real-time GOES GVAR image availability and initial standard preprocessing?)
 - Retrospective Validation: fully automate data processing flow
 - Incorporate auxiliary products MODIS daily Fuel Moisture (UC Davis),
 Lightning Strikes (Ames, NEX)

We gratefully acknowledge

Support by

- USDA Forest Service
- University of California, Davis
- US Department of Homeland Security

UC Davis GOES Receiver infrastructure and data are provided by

CIMIS (California Irrigation Management Information System) program http://www.cimis.water.ca.gov/cimis

and personally thank

Vince Ambrosia
Bruce Davis
Kevin Guerrero, Mark Rosenberg
Elaine Prins,
Quinn Hart,
Mui Lay, George Sheer

NASA Ames
DHS
CAL FIRE
UW-Madison/Consultant
UC Davis
UC Davis

Physical Basis for Infrared Fire Detection

Planck's Law: Radiance (
$$\lambda$$
) = $B(\lambda, T)$ wavelength temperature

$$T_{\lambda} = B^{-1}(\lambda, R_{\lambda})$$

$$T_{4\mu m} > T_{12\mu m}$$

Primary regions used for detection:

Short-wave TIR (3 - 5 µm) Long-wave TIR (10 - 12 µm)

What's actually happening at a pixel

External influence, X

Physical Observation Process

$$F(\alpha, X)$$

Measured Values at a pixel

Space-Invariant Prediction

$$W(t)$$
 - $W_r(t)$ = Residual(t)

 \uparrow
inspection reference
image image (no fires)

$$W_r(t) \approx \mathcal{H}[\gamma(t); W(t_1), ..., W(t_p)]$$

predictor unknown past (basis) images function parameters

Koltunov & Ustin (2007) *Remote Sensing of Environment*, 110(1), 18-28 Koltunov *et al.* (2009) *International Journal of Remote Sensing*, 30(1), 57-83.

Next: DDM

New burn detection in Landsat pairs

Is there a new burn near suspected false positive?