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GOES Early Fire Detection (GOES-EFD) System

Objective: A low-cost and reliable capacity for systematic
rapid detection and initial confirmation of new
Ignitions at regional level (TBD)

Detect new wildfire incidents consistently
within first 1-2 hours after start,
preferably before they are reported

by conventional sources



Geostationary Satellites: GOES

GOES Imager : * Viewing geometry — fixed
VIS and TIR images every 15-30 min

* TIR pixel size ~6 x4 km over CA

GOES-West GOES-East

Radiance ~4 pm

Band 5 Fr. 480 Time == 213.375 (2006213.0800 8/02)
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WF-ABBA™ operational algorithm for
active fire monitoring

Designed for applications interested in, for example:

. % eventually detected fires
. burned area accuracy
. number of false positive pixels

Optimized well for global scale performance

*Wildfire Automated Biomass Burning Algorithm (Prins & Menzel, 1994)



In contrast,

Early Detection has different priorities:

« Minimize the time to initial detection of an incident
« Minimize the number of false incidents (alarms)



WF-ABBA Principle: Contextual Detection

(find pixels that are much hotter than neighbors)

__, Fire Candidate
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e (Good for detecting large/hot fires (sooner or later)

e OK for thermally homogeneous areas (O is small)

o Less effective on ecosystem boundaries



GOES-EFD principle: Temporal + Contextual
(detect anomalous changes in surface properties)

Multitemporal background prediction by Dynamic Detection Model:
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Automatic Thermal Image Registration

Radiance ~4 pym

Band 5 Fr. 480 Time == 213.375 (2006213.0800 5/02)
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GOES-EFD ver. 0.2: Training and Preprocessing

Training Stage Preprocessing
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GOES-EFD ver. 0.2: Detection Stage

Detection Stage
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Event Tracking: from pixels to events

1) Do pixels flagged “fire” in this frame form the same

fire Incident/complex?
2) A new incident?

Event == group of fire pixels to be considered
a single wildfire incident

» An “existing” event: No action Is necessary
— a re-detected wildfire
— a re-detected false

« A new"event: An actien may be reguired
— a true new ignition, or

— a false positive



Initial Experiment with fire season 2006
Central California

Detection Period: 40 days; 2852 images: Aug 3 —
Oct 1 at ~20-min time step on
average.

-- Substantial Cloud Cover

s -

GOES-11 Scene

Wildfire Large (>2 ha final size) wildfires;
Incidents* Used: CA only

Sample #1: 13 fires with known initial report HOUR

Sample #2: 25 fires with known initial report DATE

* Used wildfire incident databases from:
« California Department of Forestry and Fire Protection (CAL FIRE)
* Geospatial Multi-Agency Coordination (GeoMAC) group

Include wildfire incident reports from: USFS, BLM, NPS, CAL FIRE, et al.



Validation methodology: incidents

Koltunov, Ustin, & Prins (2012)

1. Match detections in space and time to official wildfire incident records
(including fire initial report/start time and estimated end time)
2. Matched incidents == true positives

3. Unmatched incidents == a false positive OR un-reported fire

What about unreported/unrecorded incidents?
— check falses against new burns in Landsat

Koltunov A., Ustin, S. L., Prins, E (2012) “On timeliness and accuracy of
wildfire detection by the GOES WF-ABBA algorithm over California during
the 2006 fire season”, Remote Sensing of Environment, in Revision



Detection timeliness: cumulative
distribution function (c.d.f.)

Detection latency relative to initial report from conventional sources
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Performance statistics

dincid GOES-EFD | GOES-EFD | GOES-EFD WFABBA
Detected incidents rapid regular @30min @30min

for 13 fires with recorded report hour

Detected in < 1 hour 11/13 10/13 10/13
Detected before reported 4/13 4/13 3/13

216 142 105

Total latency reduction . . :
Min min min

for 25 fires with recorded report date

Detected in < 12 hours ‘ 16/25 15/25 15/25

False/non-wildfire

incidents up to 784 up to 79

GOES-EFD detects fires earlier than WF-ABBA



Example

Marysville-Dobbins Fire: near Marysville, CA
reported @1:05 pm Aug 16, 2006

high

low

GOES-EFD first detection —in 12:10 pm image
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Summary

« Initial, proof-of-concept version ready (optimizations under way)
 GOES-EFD will complement WF-ABBA global monitoring capabilities

at regional level:

Optimized for Regional Scale Surveillance Optimized for Global Scale Surveillance

Best for Detecting New Ignitions ASAP Best for Consistently Monitoring Active Fires

Next steps:

Development-test iterations
Work with end-users partners to ensure sustained and informed use

Validate extensively
Deploy



Future Development Activities
(not currently funded)

« UC-Davis/RSAC team proposed to 2011 ROSES Applied Science (1-year Stage 1
“Feasibility”) toward potential 3 more years of combined funding (NASA + USFS)

» Involve First Responders in the application design and tests ASAP:
— How to best use ignition-candidates from GOES-EFD?

— How to best combine GOES-EFD product with conventional wildfire
identification means?

» Application Development:

— Massive-scale algorithm optimizations and routine annual retrospective
validations

— Developing a stable real-time GOES GVAR data acquisition block (can
NEX/RSAC facilitate real-time GOES GVAR image availability and initial standard
preprocessing?)

— Retrospective Validation: fully automate data processing flow

— Incorporate auxiliary products MODIS daily Fuel Moisture (UC Davis),
Lightning Strikes (Ames, NEX)
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Physical Basis for Infrared Fire Detection

Planck’s Law: Radiance (A) =B (A, T)
/

wavelength temperature
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Primary regions used
for detection:

Short-wave TIR
(3-5pum)
4 Jm Long-wave TIR
“— Thermal IR (10 - 12 uym)




What's actually happening at a pixel

Surface Internal Lpixel ~ External *
properties, o - influence, X .&

N\ /

Physical Observation Process
F(o, X)

!

Measured Values at a pixel

Next: What's needed

....



Space-Invariant Prediction

W(t) - W/(t) = Residual(t)
! !

inspection reference
image image (no fires)

W, (t) = HIL y(t); W(ty), ... , W(tp)]
Ve \ N .

predictor unknown past (basis) images
function parameters

Koltunov & Ustin (2007) Remote Sensing of Environment, 110(1), 18-28

Koltunov et al. (2009) International Journal of Remote Sensing, 30(1), 57-83.

Next: DDM



New burn detection in Landsat pairs

Path-Row: 43-34
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Is there a new
burn near
suspected
false positive?



