Remote Sensing from Unmanned Aircraft: Image processing workflows, classification, and terrain extraction

Andrea S. Laliberte

earthmetrics, Brownsville, OR formerly with USDA ARS Jornada Experimental Range, Las Cruces, NM

UAS for vegetation mapping

- Increased interest in using UAS for natural resource remote sensing tasks
- Smaller, light weight sensors for small UAS
- Low operating costs, imagery with very high resolution, repeated deployment for change detection, vegetation health

FAA: Integration of UAS in National

Airspace by 2015

UAS Operations at the Jornada Experimental Range

- Objectives: development of operational UAS-based remote sensing program for ecological applications
- Operated 2 UAS since 2006
- Areas of interests:
 - Access to airspace
 - Image acquisition
 - Terrain extraction
 - Orthorectification
 - Mosaicking
 - Vegetation classifications
 - Geometric and classification accuracies
 - Operational workflows

UAS Missions

- New Mexico
 - In National Airspace under a COA
 - In restricted (military) airspace
- Idaho 2008: COA issued to USDA
- Arizona 2011: COA issued to USDA
- Team of 6
 - 2 private pilot license
 - Private pilot ground school
 - FAA Class II med. cert.

BAT 3 UAS

- 1.8 m wingspan, 10 kg weight
- Flight duration: 2-5 hours

Sensors

- Video camera
- Canon SD900 10 mp
- Tetracam MiniMCA, 6 narrow bands, blue to near infrared

Image acquisition

- 700 ft AGL
- 75% forward, 40% sidelap
- Data file: X,Y,Z, roll, pitch, heading

Footprint: Spatial:

Spectral:

Canon

6 cm

3 bands

Radiometric: 8-bit

Multispectral

160m x 213m 145m x 182m

13 cm 6 bands

10-bit

Orthorectification and Mosaicking

Accuracy of Orthorectified Mosaics

New Mexico

173 ha

257 images

Elevation diff: 14 m

Reference: dGPS points

Idaho

116 ha

156 images

Elevation diff: 113 m

Reference: UltraCam

X image

Multispectral image processing workflow

Radiometric calibration

- Obtain ASD reflectance for calibration targets and dominant vegetation/soil
- Empirical line method to derive coefficients to fit digital numbers to field measured reflectance spectra

Color balancing

Image dodging approach during mosacking process in Erdas

1000 m

Strong vignetting

Vegetation Classifications

- Object-based image analysis workflow: eCognition
 - Feature extraction through image segmentation and classification
 - Develop approaches for large image files: transferable rule-base
 - Determine features suitable for imagery from low-cost digital cameras (I-H-S, shape, texture)
 - Use of decision trees to determine optimal features
 - Develop field sampling approaches suitable for very high resolution imagery

Based on applying process tree for plots

- Required tiling and ran 10-12 hrs
- Overall classification accuracy: 83% and 88%

Multispectral classification

Class	Producers Acc. (%)	Users Acc. (%)
Tarbush	52	83
Broom snakeweed	72	73
Creosote	94	79
Bush muhly	79	72
Marioly	86	81
Mesquite	89	92
Sumac	49	96
Tobosa	93	98
Overall Acc. (%)	87	
Карра	0.83	

Terrain Extraction from RGB

- Extraction of digital surface model (DSM)
- Sparse DSM at 0.5-1 m resolution
 - Erdas ATE
 - Represents general terrain
- Dense DSM based on 3-D point cloud at pixel level
 - Erdas eATE
 - Fusion of RGB values with elevation data
 - Deriving vegetation heights
- Data used to estimate parameters for hydrologic and erosion models

Orthomosaic (387 images) and 50-cm resolution DSM

Terrain extraction from UAS imagery

1 m resolution DSM

Watershed delineation

DSM validation

Elevation values derived from the DSM and from field measurements with survey grade dGPS

Hillslope profiles derived from the DSM and from field measurements with survey grade dGPS

Dense DSM based on 3D point cloud

Using Erdas eATE module

Summary

- Workflows for UAS image acquisition, orthorectification, mosaicking, classification
- Multispectral imagery allows for better species discrimination and change detection studies
- Terrain extraction and vegetation height estimations show promise
- UAS are viable platforms for obtaining quality remote sensing data at very high resolution
- Data use for land cover mapping, hydrologic assessment, phenology, archaeology

Ongoing and Future Research

- Multispectral imagery
 - Ongoing spectral ground and airborne measurements, change detection, vegetation indices
- Terrain extraction
 - Streamline processing of point clouds
 - Compare elevations and vegetation heights with field data
- Scale these approaches to larger areas
- Compare/upscale using WorldView-2 data
- Test other UAS sensors (thermal, lidar, hyperspectral)

BAT 4

13 ft wingspan35 lb payload150 W generator

Thank you!

