The Rx-CADRE Integrated Prescribed Fire Measurements Campaign

November 2012

Airborne Measurements with Piloted and Un-Piloted Aircraft

Rx-CADRE Airborne Measurements - overview

Rx-CADRE (Prescribed Fire Combustion and Atmospheric Dynamic Research) has conducted successful research campaigns at Eglin Air Force Base in 2008 and 2011

➤The Rx-CADRE team is <u>inter-agency</u> (e.g., DoD, USFS, NASA, DoE, Academia) and <u>multidisciplinary</u> (e.g., ecology, remote sensing, meteorology, fire physics)

The 2011 Campaign integrated Unmanned Aircraft Systems (UAS's) into the research program

Rx-CADRE funded by the interagency Joint Fire Science Program to conduct a third campaign in non-forested fuels scheduled for November 2012

Primary objectives of Rx-CADRE 2012
 Evaluate smoke chemistry and transport models
 Evaluate fire behavior models

Rx-CADRE Airborne Measurements

Fuel Characteristics	1		→ Airborne:	UAS and/or m	anned platform
•Mass	Local Event-Scale Meteorology	2			
•Depth •Moisture	•Plume properties •Fine-scale wind & thermodynamic fields	Fire Behavior •Fire intensity	3 Fuel Consumption		
T		 Rate of spread Convective/radiative power & energy 	Mass consumed by fuel component	Event-Scale Fire Mapping	3 4
post-fire		•Soil heating 6	Fire Effects	•Fire radiative power & energy	Emissions & Event- Scale Plume Behavior
LIDAR collection (manned)		•IR imagery	Thermal radiometryHD visual imagery	•Flame front•CO, CO2, Hdevelopment•Black carb	•CO, CO ₂ , H ₂ O, PM _{2.5} •Black carbon
			•Stem temperatures	•Satellite imagery of fire behavior and effects	•Plume height
				Active-fire IR/visible mapping (UAS and manned)	Active-fire smoke sampling (UAS and manned)

Rx-CADRE Airborne Measurements

Burns involving aircraft will be conducted on Range B-70

➤There will be two kinds of units
 ■Large units (500-1000 acres, N=2)
 ✓ Grass and turkey oak fuels
 ✓ Objective: evaluate smoke chemistry and transport models
 ■Small units (~5-10 acres, N=6)
 ✓ Uniform grass fuels
 ✓ Objective: evaluate fire behavior models

B-70 Central and West

Blocks with grass and turkey shrub oak componentGrass only (herbicide blocks without shrub oak component)

B-70 East

Rx-CADRE Airborne Measurements – Large Units

Measurement	Manned or UAS	Platform	Pre-fire	Pre- ignition	Active- fire	Post-fire
LiDAR fuels mapping	Manned	Cessna 206 or Piper Navajo				
Atmospheric profile	Manned	Twin Otter				
Fire mapping	Manned	Cessna 206 or Piper Navajo				
Fire mapping	UAS	G2R and ScanEagle				
Smoke chemistry and transport	Manned	Twin Otter				
Near-source black carbon, wind, T, and RH	UAS	G2R				

Plot layout

Pre-ignition atmospheric profile measurements

Note: Unmanned aircraft will either remain clear of large fire unit (ScanEagle) or not be launched (G2R) until Twin Otter is above highest UAS operating altitude 1500 ft and is 1 nm downwind of the large fire unit.

Manned
 Cessna 206 or Piper Navajo – WASP sensor (LWIR/MWIR/SWIR and visible fire mapping at zenith)
 USFS de Havilland Twin Otter – Smoke sampling equipment
 EAFB Test Wing G2R – black carbon, wind, T, and RH sampler (flies in front of met tower)
 EAFB Test Wing G2R – LWIR and visible fire mapping (oblique/staring – follows ignition)
 U. Alaska ScanEagle – LWIR and visible fire mapping (oblique/staring – follows ignition)

 $0 \,\mathrm{km}$

10

Twin otter

20

30

40 km

NOTE: Smoke sampling aircraft is downwind of burn units during active-fire period with both vertical and horizontal separation from UAS and other manned aircraft

Active fire measurements – UAS only

U. Alaska quadrotor (Dragonflyer X6 or Aeryon Scout) – LWIR fire mapping (stationary with whole-unit FOV at nadir)

➡ EAFB Test Wing G2R – LWIR and visible fire mapping (oblique/staring – whole unit)

Ground-instrument cluster

Rx-CADRE Active Fire Measurements – UAS Specifications

Answers to questionnaire